Advertisement

Moraxella catarrhalis – Pathogen or Commensal?

  • Christoph Aebi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 697)

Abstract

Moraxella catarrhalis is an exclusively human commensal and mucosal pathogen. Its role as a disease-causing organism has long been questioned. Today, it is recognized as one of the major causes of acute otitis media in children, and its relative frequency of isolation from both the nasopharynx and the middle ear cavity has increased since the introduction of the heptavalent pneumococcal conjugate vaccine, which is associated with a shift in the composition of the nasopharyngeal flora in infants and young children. Although otitis media caused by M. catarrhalis is generally believed to be mild in comparison with pneumococcal disease, numerous putative virulence factors have now been identified and it has been shown that several surface components of M. catarrhalis induce mucosal inflammation. In adults with chronic obstructive pulmonary disease (COPD), M. catarrhalis is now a well-established trigger of approximately 10% of acute inflammatory exacerbations.

Although the so-called cold shock response is a well-described bacterial stress response in species such as Escherichia coli, Bacillus subtilis or – more recently – Staphylococcus aureus, M. catarrhalis is the only typical nasopharyngeal pathogen in which this response has been investigated. Indeed, a 3-h 26°C cold shock, which may occur physiologically, when humans inspire cold air for prolonged periods of time, increases epithelial cell adherence and enhances proinflammatory host responses and may thus contribute to the symptoms referred to as common cold, which typically are attributed to viral infections.

Keywords

Chronic Obstructive Pulmonary Disease Acute Otitis Medium Cold Shock Neisseria Gonorrhoeae Human Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Murphy TF. Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response. Microbiol Rev. 1996;60:267–79.PubMedGoogle Scholar
  2. 2.
    Schryvers AB, Bonnah R, Yu RH, Wong H, Retzer M. Bacterial lactoferrin receptors. Adv Exp Med Biol. 1998;443:123–33.PubMedGoogle Scholar
  3. 3.
    Palmu AA, Herva E, Savolainen H, Karma P, Makela PH, Kilpi TM. Association of clinical signs and symptoms with bacterial findings in acute otitis media. Clin Infect Dis. 2004;38:234–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy TF, Parameswaran GI. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis. 2009;49:124–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed A, Broides A, Givon-Lavi N, Peled N, Dagan R, Greenberg D. Clinical and laboratory aspects of Moraxella catarrhalis bacteremia in children. Pediatr Infect Dis J. 2008;27:459–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Bootsma HJ, van der Heide HG, van de Pas S, Schouls LM, Mooi FR. Analysis of Moraxella catarrhalis by DNA typing: evidence for a distinct subpopulation associated with virulence traits. J Infect Dis. 2000;181:1376–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Wirth T, Morelli G, Kusecek B, et al. The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis. Genome Res. 2007;17:1647–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Meier PS, Troller R, Heiniger N, Hays JP, van Belkum A, Aebi C. Unveiling electrotransformation of Moraxella catarrhalis as a process of natural transformation. FEMS Microbiol Lett. 2006;262:72–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Helminen ME, Maciver I, Paris M, et al. A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis. 1993;168:1194–201.PubMedGoogle Scholar
  10. 10.
    Attia AS, Lafontaine ER, Latimer JL, Aebi C, Syrogiannopoulos GA, Hansen EJ. The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance. Infect Immun. 2005;73:2400–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Tan TT, Morgelin M, Forsgren A, Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis. 2007;195:1661–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Hol C, Verduin CM, van Dijke E, Verhoef J, van Dijk H. Complement resistance in Branhamella (Moraxella) catarrhalis. Lancet. 1993;341:1281.CrossRefPubMedGoogle Scholar
  13. 13.
    Murphy S, Fitzgerald M, Mulcahy R, Keane C, Coakley D, Scott T. Studies on haemagglutination and serum resistance status of strains of Moraxella catarrhalis isolated from the elderly. Gerontology. 1997;43:277–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Aebi C, Maciver I, Latimer JL et al. A protective epitope of Moraxella catarrhalis is encoded by two different genes. Infect Immun. 1997;65:4367–77.PubMedGoogle Scholar
  15. 15.
    Brooks MJ, Sedillo JL, Wagner N, et al. Modular arrangement of allelic variants explains the divergence in Moraxella catarrhalis UspA protein function. Infect Immun. 2008;76:5330–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Brooks MJ, Sedillo JL, Wagner N, et al. Moraxella catarrhalis binding to host cellular receptors is mediated by sequence-specific determinants not conserved among all UspA1 protein variants. Infect Immun. 2008;76:5322–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Meier PS, Troller R, Heiniger N, Grivea IN, Syrogiannopoulos GA, Aebi C. Moraxella catarrhalis strains with reduced expression of the UspA outer membrane proteins belong to a distinct subpopulation. Vaccine. 2005;23:2000–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Spaniol V, Heiniger N, Troller R, Aebi C. Outer membrane protein UspA1 and lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella catarrhalis. Microbes Infect. 2008;10:3–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Aebi C, Lafontaine ER, Cope LD, et al. Phenotypic effect of isogenic uspA1 and uspA2 mutations on Moraxella catarrhalis 035E. Infect Immun. 1998;66:3113–9.PubMedGoogle Scholar
  20. 20.
    Tan TT, Nordstrom T, Forsgren A, Riesbeck K. The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2. J Infect Dis. 2005;192:1029–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Lafontaine ER, Cope LD, Aebi C, Latimer JL, McCracken GH Jr, Hansen EJ. The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. J Bacteriol. 2000;182:1364–73.CrossRefPubMedGoogle Scholar
  22. 22.
    Hill DJ, Virji M. A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Mol Microbiol. 2003;48:117–29.CrossRefPubMedGoogle Scholar
  23. 23.
    Bullard B, Lipski SL, Lafontaine ER. Hag directly mediates the adherence of Moraxella catarrhalis to human middle ear cells. Infect Immun. 2005;73:5127–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun. 2003;71:4341–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Meier PS, Freiburghaus S, Martin A, Heiniger N, Troller R, Aebi C. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatr Infect Dis J. 2003;22:256–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun. 2005;73:7569–77.CrossRefPubMedGoogle Scholar
  27. 27.
    Faden H, Harabuchi Y, Hong JJ. Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: relationship to otitis media. J Infect Dis. 1994;169:1312–7.PubMedGoogle Scholar
  28. 28.
    Vaneechoutte M, Verschraegen G, Claeys G, Weise B, Van den Abeele AM. Respiratory tract carrier rates of Moraxella (Branhamella) catarrhalis in adults and children and interpretation of the isolation of M. catarrhalis from sputum. J Clin Microbiol. 1990;28:2674–80.PubMedGoogle Scholar
  29. 29.
    Stutzmann Meier P, Heiniger N, Troller R, Aebi C. Salivary antibodies directed against outer membrane proteins of Moraxella catarrhalis in healthy adults. Infect Immun. 2003;71:6793–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldblatt D, Turner MW, Levinsky RJ. Branhamella catarrhalis: antigenic determinants and the development of the IgG subclass response in childhood. J Infect Dis. 1990;162:1128–35.PubMedGoogle Scholar
  31. 31.
    Chen D, Barniak V, VanDerMeid KR, McMichael JC. The levels and bactericidal capacity of antibodies directed against the UspA1 and UspA2 outer membrane proteins of Moraxella (Branhamella) catarrhalis in adults and children. Infect Immun. 1999;67:1310–6.PubMedGoogle Scholar
  32. 32.
    Tan TT, Christensen JJ, Dziegiel MH, Forsgren A, Riesbeck K. Comparison of the serological responses to Moraxella catarrhalis immunoglobulin D-binding outer membrane protein and the ubiquitous surface proteins A1 and A2. Infect Immun. 2006;74:6377–86.CrossRefPubMedGoogle Scholar
  33. 33.
    Slevogt H, Seybold J, Tiwari KN, et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol. 2007;9:694–707.CrossRefPubMedGoogle Scholar
  34. 34.
    Heiniger N, Spaniol V, Troller R, Vischer M, Aebi C. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis. 2007;196:1080–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Luke NR, Jurcisek JA, Bakaletz LO, Campagnari AA. Contribution of Moraxella catarrhalis type IV pili to nasopharyngeal colonization and biofilm formation. Infect Immun. 2007;75:5559–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun. 2007;75:4316–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296:202–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Slevogt H, Maqami L, Vardarowa K, et al. Differential regulation of Moraxella catarrhalis-induced interleukin-8 response by protein kinase C isoforms. Eur Respir J. 2008;31:725–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Fink J, Mathaba LT, Stewart GA, et al. Moraxella catarrhalis stimulates the release of proinflammatory cytokines and prostaglandin E from human respiratory epithelial cells and monocyte-derived macrophages. FEMS Immunol Med Microbiol. 2006;46:198–208.CrossRefPubMedGoogle Scholar
  40. 40.
    Rouadi P, Baroody FM, Abbott D, Naureckas E, Solway J, Naclerio RM. A technique to measure the ability of the human nose to warm and humidify air. J Appl Physiol. 1999;87:400–6.PubMedGoogle Scholar
  41. 41.
    Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells. J Infect Dis. 2009;200:1593–601.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith-Vaughan H, Byun R, Nadkarni M, et al. Measuring nasal bacterial load and its association with otitis media. BMC Ear Nose Throat Disord. 2006;6:10.CrossRefPubMedGoogle Scholar
  43. 43.
    Jetter M, Heiniger N, Spaniol V, Troller R, Schaller A, Aebi C. Outer membrane porin M35 of Moraxella catarrhalis mediates susceptibility to aminopenicillins. BMC Microbiol. 2009;9:188.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pediatrics and Institute for Infectious DiseasesUniversity of Bern, InselspitalBernSwitzerland

Personalised recommendations