Design of Image Processing Applications

Part of the Embedded Systems book series (EMSY)


In today’s information society, processing of digital images becomes a key element for interaction with our environment and for transport of important messages. Consequently a huge effort has been undertaken in developing algorithms for image enhancement, transformation, interpretation, and compression. Whereas in the past computational capacities have shown to be the limiting factor, the recent progress in design of semiconductor devices allows implementation of powerful algorithms. Corresponding examples can be found in constantly increasing function ranges of cellular phones, in various types of object recognition, in complex acquisition of volumetric scans for medical imaging, or in digitization of production, transmission, and projection of cinematographic content.


JPEG2000 Compression Image Processing Application Achievable Throughput Implementation Alternative System Level Design 


  1. 8.
    Acharya, T.: VLSI algorithms and architectures for JPEG2000. Ubiquity 7(35), 1–42 (2006)CrossRefMathSciNetGoogle Scholar
  2. 81.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 133.
    Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert, A., Teich, J.: A SystemC-based design methodology for digital signal processing systems. EURASIP J. Embedded Syst. Special Issue Embedded Digital Signal Process. Syst. 2007, Article ID 47,580, 22 pages (2007)Google Scholar
  4. 150.
    Impoco, G.: JPEG2000 – a short tutorial. Tech. Rep., Visual Computing Lab - ISTI-CNR Pisa, Italy (2004)Google Scholar
  5. 152.
    ISO/IEC JTC1/SC29/WG1: JPEG2000 Part I Final Committee Draft Version 1.0 (2002). N1646RGoogle Scholar
  6. 153.
    ITU: Digital Compression and Coding of Continuous-Tone Still Images – Requirements and Guidelines. CCITT, T.81 edn. (1992)Google Scholar
  7. 163.
    Keinert, J., Dutta, H., Hannig, F., Haubelt, C., Teich, J.: Model-based synthesis and optimization of static multi-rate image processing algorithms. In: Proceedings of Design, Automation & Test in Europe, pp. 135–140. Nice, France (2009)Google Scholar
  8. 164.
    Keinert, J., Falk, J., Haubelt, C., Teich, J.: Actor-oriented modeling and simulation of sliding window image processing algorithms. In: Proceedings of the 2007 IEEE/ACM/IFIP Workshop of Embedded Systems for Real-Time Multimedia (ESTIMEDIA 2007), pp. 113–118. Salzburg, Austria (2007)Google Scholar
  9. 166.
    Keinert, J., Haubelt, C., Teich, J.: Modeling and analysis of windowed synchronous algorithms. ICASSP2006 III, 892–895 (2006)Google Scholar
  10. 167.
    Keinert, J., Haubelt, C., Teich, J.: Simulative buffer analysis of local image processing algorithms described by Windowed Synchronous Data Flow. In: IC-SAMOS, pp. 161–168. Samos, Greece (2007)Google Scholar
  11. 168.
    Keinert, J., Haubelt, C., Teich, J.: Automatic synthesis of design alternatives for fast stream-based out-of-order communication. In: Proceedings of the 2008 IFIP/IEEE WG 10.5 International Conference on Very Large Scale Integration (VLSI-SoC), pp. 265–270. Rhodes Island, Greece (2008)Google Scholar
  12. 169.
    Keinert, J., Haubelt, C., Teich, J.: Synthesis of multi-dimensional high-speed FIFOs for out-of-order communication. In: Architecture of Computing Systems (ARCS 2008), vol. 4934/2008, pp. 130 – 143. Springer, New York, NY (2008)Google Scholar
  13. 170.
    Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C., Teich, J., Meredith, M.: SystemCoDesigner—an automatic ESL synthesis approach by design space exploration and behavioral synthesis for streaming applications. ACM Trans. Des. Autom. Electron. Syst. 14(1), 1–23 (2009)CrossRefGoogle Scholar
  14. 171.
    Keinert, J., Teich, J.: Data flow based system level design and analysis of image processing applications. Poster on the EDAA PhD forum at DATE 2009 (2009)Google Scholar
  15. 198.
    Li, J.: Image compression: The mathematics of JPEG2000. Modern Signal Process. MSRI Publ. 46, 185–221 (2003)Google Scholar
  16. 200.
    Liao, H., Mandal, M., Cockburn, B.: Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52(5), 1315–1326 (2004)CrossRefMathSciNetGoogle Scholar
  17. 203.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edition (Wavelet Analysis & Its Applications). San Diego, CA (1999)MATHGoogle Scholar
  18. 304.
    Wilt, A.J.: Progressive segmented frame. In: DV Magazine. (2000)

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.NürnbergGermany
  2. 2.Department of Computer Science 12University of Erlangen-NurembergErlangenGermany

Personalised recommendations