Advertisement

Dynamic SPM Methods for Local Analysis of Thermo-Mechanical Properties

  • M. P. Nikiforov
  • Roger Proksch
Chapter

Abstract

Thermo-mechanical properties of materials determine whether they will be useful or not. Measurement techniques for bulk mechanical parameters (Young’s modulus, loss modulus, Poisson ratio, etc.) are well established and regulated by ASTM standards [1 – 14]. As length scales shrink, Nanoindentation (NI) and Atomic Force Microscopy (AFM) techniques allow sub-1,000nm spatial resolution thermo-mechanical properties measurements. These techniques started becoming available less than two decades ago [5] and are evolving rapidly. Examples of nanoscale property measurements include subsurface delamination in thin films [6], the structure of the cytoskeleton of a single cell [7] and composition of polymer blends [8]. As the spatial resolution increases, the variability in the measurements also increases. Part of this increase in variability is real in the sense that as one approaches characteristic length scales of a material, one begins to sample domains with very different thermal and mechanical properties.

Keywords

Atomic Force Microscopy Contact Radius Contact Resonance Surface Junction Constant Temperature Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

References

  1. 1.
    C1259, A. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration, 2008.Google Scholar
  2. 2.
    E111, A. Standard test method for Young’s modulus, tangent modulus, and chord modulus, 2004.Google Scholar
  3. 3.
    E1876, A. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration, 2009.Google Scholar
  4. 4.
    C848, A. Standard test method for Young’s modulus, shear modulus, and Poisson’s ratio for ceramic whitewares by resonance, 2006.Google Scholar
  5. 5.
    Oliver, W. C.; Pharr, G. M. Journal of Materials Research 1992, 7, (6), 1564–1583.CrossRefGoogle Scholar
  6. 6.
    Dinelli, F.; Castell, M. R.; Ritchie, D. A.; Mason, N. J.; Briggs, G. A. D.; Kolosov, O. V. Philosophical Magazine A:Physics of Condensed Matter Structure Defects and Mechanical Properties 2000, 80, (10), 2299–2323.Google Scholar
  7. 7.
    Kuznetsova, T. G.; Starodubtseva, M. N.; Yegorenkov, N. I.; Chizhik, S. A.; Zhdanov, R. I. Micron 2007, 38, (8), 824–833.CrossRefGoogle Scholar
  8. 8.
    Achalla, P.; McCormick, J.; Hodge, T.; Moreland, C.; Esnault, P.; Karim, A.; Raghavan, D. Journal of Polymer Science Part B:Polymer Physics 2006, 44, (3), 492–503.CrossRefGoogle Scholar
  9. 9.
    Jesse, S.; Nikiforov, M. P.; Germinario, L. T.; Kalinin, S. V. In New developments in local thermomechanical characterization of automotive refinish clearcoats using band excitation atomic force microscopy with heated probe, 36th Annual Conference on Thermal Analysis and Applications, North American Thermal Analysis Society, Atlanta, GA, 2008.Google Scholar
  10. 10.
    Lodge, T. P.; McLeish, T. C. B. Macromolecules 2000, 33, (14), 5278–5284.CrossRefGoogle Scholar
  11. 11.
    Fetters, L. J.; Lohse, D. J.; Milner, S. T.; Graessley, W. W. Macromolecules 1999, 32, (20), 6847–6851.CrossRefGoogle Scholar
  12. 12.
    Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. Macromolecules 1994, 27, (17), 4639–4647.CrossRefGoogle Scholar
  13. 13.
    Attard, P. Journal of Physics:Condensed Matter 2007, 19, (47), 33.CrossRefGoogle Scholar
  14. 14.
    Yuya, P. A.; Hurley, D. C.; Turner, J. A. Journal of Applied Physics 2008, 104, (7), 7.CrossRefGoogle Scholar
  15. 15.
    Hurley, D. C.; Shen, K.; Jennett, N. M.; Turner, J. A. Journal of Applied Physics 2003, 94, (4), 2347–2354.CrossRefGoogle Scholar
  16. 16.
    Oliver, W. C.; Pharr, G. M. Journal of Materials Research 2004, 19, (1), 3–20.CrossRefGoogle Scholar
  17. 17.
    Pelled, G.; Tai, K.; Sheyn, D.; Zilberman, Y.; Kumbar, S.; Nair, L. S.; Laurencin, C. T.; Gazit, D.; Ortiz, C. Journal of Biomechanics 2007, 40, (2), 399–411.CrossRefGoogle Scholar
  18. 18.
    Uskokovic, P. S.; Tang, C. Y.; Tsui, C. P.; Ignjatovic, N.; Uskokovic, D. P. Journal of the European Ceramic Society 2007, 27, (2–3), 1559–1564.CrossRefGoogle Scholar
  19. 19.
    Peng, Z. J.; Gong, J. H.; Miao, H. Z. Journal of the European Ceramic Society 2004, 24, (8), 2193–2201.CrossRefGoogle Scholar
  20. 20.
    Feng, G.; Ngan, A. H. W. Journal of Materials Research 2002, 17, (3), 660–668.CrossRefGoogle Scholar
  21. 21.
    Briscoe, B. J.; Fiori, L.; Pelillo, E. Journal of Physics D:Applied Physics 1998, 31, (19), 2395–2405.CrossRefGoogle Scholar
  22. 22.
    Almqvist, N.; Bhatia, R.; Primbs, G.; Desai, N.; Banerjee, S.; Lal, R. Biophysical Journal 2004, 86, (3), 1753–1762.CrossRefGoogle Scholar
  23. 23.
    Rotsch, C.; Braet, F.; Wisse, E.; Radmacher, M. Cell Biology International 1997, 21, (11), 685–696.CrossRefGoogle Scholar
  24. 24.
    Salemi, F.; Lamagna, G.; Coco, V.; Barone, L. G. In DePascale, S.; Mugnozza, G. S.; Maggio, A.; Schettini, E., Eds. Preparation and characterization of biodegradable paper coated with blends based on PHA, International Symposium on High Technology for Greenhouse System Management (Greensys 2007), Naples, ITALY, Oct 04–06, 2007; International Society Horticultural Science:Naples, ITALY, 2007; pp 203–210.Google Scholar
  25. 25.
    Namani, R.; Simha, N. Journal of Strain Analysis for Engineering Design 2009, 44, (5), 347–362.CrossRefGoogle Scholar
  26. 26.
    Pathmanathan, P.; Gavaghan, D.; Whiteley, J. Journal of Strain Analysis for Engineering Design 2009, 44, (5), 391–406.CrossRefGoogle Scholar
  27. 27.
    Lin, D. C.; Dimitriadis, E. K.; Horkay, F. Journal of Biomechanical Engineering:Transactions of the ASME 2007, 129, (3), 430–440.CrossRefGoogle Scholar
  28. 28.
    Gupta, S.; Carrillo, F.; Li, C.; Pruitt, L.; Puttlitz, C. Materials Letters 2007, 61, (2), 448–451.CrossRefGoogle Scholar
  29. 29.
    Kaufman, J. D.; Klapperich, C. M. In Viney, C.; Katti, K.; Ulm, F. J.; Hellmich, C., Eds. Nanomechanical testing of hydrated biomaterials:Sample preparation, data validation and analysis, Symposium on Mechanical Properties of Bioinspired and Biological Materials held at the 2004 MRS Fall Meeting, Boston, MA, Nov 29–Dec 02, 2004. Materials Research Society:Boston, MA, 2004; pp 287–292.Google Scholar
  30. 30.
    Kaufman, J. D.; Klapperich, C. M. In Wahl, K. J.; Huber, N.; Mann, A. B.; Bahr, D. F.; Cheng, Y. T., Eds. Nanomechanical testing of hydrated biomaterials:Sample preparation, data validation and analysis, Symposium on Fundamentals of Nanoindentation and Nanotribology III held at the 2004 MRS Fall Meeting, Boston, MA, Nov 29–Dec 03, 2004; Materials Research Society:Boston, MA, 2004; pp 69–74.Google Scholar
  31. 31.
    Lin, D. C.; Horkay, F. Soft Matter 2008, 4, (4), 669–682.CrossRefGoogle Scholar
  32. 32.
    Johnson, K. L.; Kendall, K.; Roberts, A. D. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences 1971, 324, (1558), 301–313.CrossRefGoogle Scholar
  33. 33.
    Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Journal of Colloid and Interface Science 1975, 53, (2), 314–326.CrossRefGoogle Scholar
  34. 34.
    Maugis, D. Journal of Colloid and Interface Science 1992, 150, (1), 243–269.CrossRefGoogle Scholar
  35. 35.
    Round, A. N.; Miles, M. J. In Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA, Trends in Nanotechnology International Conference (TNT2003), Salamanca, SPAIN, Sep 15–19, 2003; IOP Publishing Ltd:Salamanca, SPAIN, 2003l pp S176–S183.Google Scholar
  36. 36.
    Zhong, S.; Li, H.; Chen, X. Y.; Cao, E. H.; Jin, G.; Hu, K. S. Langmuir 2007, 23, (8), 4486–4493.CrossRefGoogle Scholar
  37. 37.
    Johnson, D. J.; Miles, N. J.; Hilal, N. Advances in Colloid and Interface Science 2006, 127, (2), 67–81.CrossRefGoogle Scholar
  38. 38.
    Butt, H. J.; Kappl, M.; Mueller, H.; Raiteri, R.; Meyer, W.; Ruhe, J. Langmuir 1999, 15, (7), 2559–2565.CrossRefGoogle Scholar
  39. 39.
    Butt, H. J. Biophysical Journal 1992, 63, (2), 578–582.CrossRefGoogle Scholar
  40. 40.
    Butt, H. J. Biophysical Journal 1991, 60, (6), 1438–1444.CrossRefGoogle Scholar
  41. 41.
    Treloar, L. R. G., The physics of rubber elasticity. 3d ed.; Oxford University Press:Oxford, 1975.Google Scholar
  42. 42.
    Crick, S. L.; Yin, F. C. P. Biomechanics and Modeling in Mechanobiology 2007, 6, (3), 199–210.CrossRefGoogle Scholar
  43. 43.
    Guo, S. L.; Akhremitchev, B. B. Biomacromolecules 2006, 7, (5), 1630–1636.CrossRefGoogle Scholar
  44. 44.
    Jaasma, M. J.; Jackson, W. M.; Keaveny, T. M. Annals of Biomedical Engineering 2006, 34, (5), 748–758.CrossRefGoogle Scholar
  45. 45.
    Sun, Y. J.; Akhremitchev, B.; Walker, G. C. Langmuir 2004, 20, (14), 5837–5845.CrossRefGoogle Scholar
  46. 46.
    Jacot, J. G.; Dianis, S.; Schnall, J.; Wong, J. Y. Journal of Biomedical Materials Research Part A 2006, 79A, (3), 485–494.CrossRefGoogle Scholar
  47. 47.
    Tranchida, D.; Piccarolo, S. Macromolecular Rapid Communications 2005, 26, (22), 1800–1804.CrossRefGoogle Scholar
  48. 48.
    Stolz, M.; Raiteri, R.; Daniels, A. U.; VanLandingham, M. R.; Baschong, W.; Aebi, U. Biophysical Journal 2004, 86, (5), 3269–3283.CrossRefGoogle Scholar
  49. 49.
    Jandt, K. D. Surface Science 2001, 491, (3), 303–332.CrossRefGoogle Scholar
  50. 50.
    Tsukruk, V. V.; Huang, Z.; Chizhik, S. A.; Gorbunov, V. V. Journal of Materials Science 1998, 33, (20), 4905–4909.CrossRefGoogle Scholar
  51. 51.
    Hammiche, A.; Price, D. M.; Dupas, E.; Mills, G.; Kulik, A.; Reading, M.; Weaver, J. M. R.; Pollock, H. M. Journal of Microscopy 2000, 199, 180–190.CrossRefGoogle Scholar
  52. 52.
    Oulevey, F.; Burnham, N. A.; Gremaud, G.; Kulik, A. J.; Pollock, H. M.; Hammiche, A.; Reading, M.; Song, M.; Hourston, D. J. Polymer 2000, 41, (8), 3087–3092.CrossRefGoogle Scholar
  53. 53.
    Jesse, S.; Nikiforov, M. P.; Germinario, L. T.; Kalinin, S. V. Applied Physics Letters 2008, 93, (7), 073104.CrossRefGoogle Scholar
  54. 54.
    The TTM technique was recently developed by Anasys Instruments for thermo-mechanical property based imaging and the technique can be implemented either using an AFM or the VESTA tool from Anasys. The only difference between the TTM technique using an AFM and using the VESTA tool is the implementation of image rastering. AFM typically uses piezoelectric crystals, which allow single digit nm resolution during image rastering; motors are used in the VESTA, which allow 1um point to point resolution during image rastering. Google Scholar
  55. 55.
  56. 56.
    Nelson, B. A.; King, W. P. Review of Scientific Instruments 2007, 78, (2).Google Scholar
  57. 57.
    Varesi, J.; Majumdar, A. Applied Physics Letters 1998, 72, (1), 37–39.CrossRefGoogle Scholar
  58. 58.
    Oulevey, F.; Gremaud, G.; Semoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D. Review of Scientific Instruments 1998, 69, (5), 2085–2094.CrossRefGoogle Scholar
  59. 59.
    Rabe, U.; Arnold, W. Applied Physics Letters 1994, 64, (12), 1493–1495.CrossRefGoogle Scholar
  60. 60.
    Binnig, G.; Quate, C. F.; Gerber, C. Physical Review Letters 1986, 56, (9), 930–933.CrossRefGoogle Scholar
  61. 61.
    Jesse, S.; Kalinin, S. V.; Proksch, R.; Baddorf, A. P.; Rodriguez, B. J. Nanotechnology 2007, 18, (43), 435503.CrossRefGoogle Scholar
  62. 62.
    Rodriguez, B. J.; Callahan, C.; Kalinin, S. V.; Proksch, R. Nanotechnology 2007, 18, (47), 6.CrossRefGoogle Scholar
  63. 63.
    Gannepalli, A.; Proksch, R. 2009.Google Scholar
  64. 64.
  65. 65.
    Rabe, U.; Janser, K.; Arnold, W. Review of Scientific Instruments 1996, 67, (9), 3281–3293.CrossRefGoogle Scholar
  66. 66.
    Jesse, S.; Kalinin, S. V.; Proksch, R.; Baddorf, A. P.; Rodriguez, B. J. Nanotechnology 2007, 18, (43), 435503.CrossRefGoogle Scholar
  67. 67.
    Nikiforov, M. P.; Jesse, S.; Morozovska, A. N.; Eliseev, E. A.; Germinario, L. T.; Kalinin, S. V. Nanotechnology 2009, 20, (39), 395709.CrossRefGoogle Scholar
  68. 68.
    Nikiforov, M. P.; Gah, S.; Jesse, S.; Composto, R. J.; Kalinin, S. V. unpublished.Google Scholar
  69. 69.
  70. 70.
  71. 71.
  72. 72.
  73. 73.
  74. 74.
  75. 75.
  76. 76.
    Williams, C. C.; Wickramasinghe, H. K. Applied Physics Letters 1986, 49, (23), 1587–1589.CrossRefGoogle Scholar
  77. 77.
    Lee, J.; King, W. P. IEEE Sensors Journal 2008, 8, (11–12), 1805–1806.CrossRefGoogle Scholar
  78. 78.
    Chui, B. W.; Asheghi, M.; Ju, Y. S.; Goodson, K. E.; Kenny, T. W.; Mamin, H. J. Microscale Thermophysical Engineering 1999, 3, (3), 217–228.CrossRefGoogle Scholar
  79. 79.
    Luo, K.; Shi, Z.; Lai, J.; Majumdar, A. Applied Physics Letters 1996, 68, (3), 325–327.CrossRefGoogle Scholar
  80. 80.
    Majumdar, A.; Lai, J.; Chandrachood, M.; Nakabeppu, O.; Wu, Y.; Shi, Z. Review of Scientific Instruments 1995, 66, (6), 3584–3592.CrossRefGoogle Scholar
  81. 81.
    Nakabeppu, O.; Chandrachood, M.; Wu, Y.; Lai, J.; Majumdar, A. Applied Physics Letters 1995, 66, (6), 694–696.CrossRefGoogle Scholar
  82. 82.
    Gimzewski, J. K.; Gerber, C.; Meyer, E.; Schlittler, R. R. Chemical Physics Letters 1994, 217, (5–6), 589–594.CrossRefGoogle Scholar
  83. 83.
    Majumdar, A.; Carrejo, J. P.; Lai, J. Applied Physics Letters 1993, 62, (20), 2501–2503.CrossRefGoogle Scholar
  84. 84.
    Nonnenmacher, M.; Wickramasinghe, H. K. Applied Physics Letters 1992, 61, (2), 168–170.CrossRefGoogle Scholar
  85. 85.
    Williams, C. C.; Wickramasinghe, H. K. Journal of Vacuum Science & Technology B 1991, 9, (2), 537–540.CrossRefGoogle Scholar
  86. 86.
    Nelson, B. A.; King, W. P. Sensors and Actuators A:Physical 2007, 140, (1), 51–59.CrossRefGoogle Scholar
  87. 87.
    Royall, P. G.; Kett, V. L.; Andrews, C. S.; Craig, D. Q. M. Journal of Physical Chemistry B 2001, 105, (29), 7021–7026.CrossRefGoogle Scholar
  88. 88.
    Hammiche, A.; Pollock, H. M.; Song, M.; Hourston, D. J. Measurement Science & Technology 1996, 7, (2), 142–150.CrossRefGoogle Scholar
  89. 89.
    Pollock, H. M.; Hammiche, A. Journal of Physics D:Applied Physics 2001, 34, (9), R23–R53.CrossRefGoogle Scholar
  90. 90.
    Nelson, B. A.; King, W. P. Review of Scientific Instruments 2007, 78, (2), 023702.CrossRefGoogle Scholar
  91. 91.
    Chirtoc, M.; Gibkes, J.; Wernhardt, R.; Pelzl, J.; Wieck, A. Review of Scientific Instruments 2008, 79, (9), 8.CrossRefGoogle Scholar
  92. 92.
    Chirtoc, M.; Gibkes, J.; Antoniow, J. S.; Henry, J. F.; Neubauer, E.; Bein, B.; Pelzl, J. In Sensing thermal conductivity and structural effects at the nanoscale by scanning thermal microscopy (SThM), 35th Winter School on Wave and Quantum Acoustics, Ustroti, POLAND, Feb 27–Mar 03, 2006; EDP Sciences S A:Ustroti, POLAND, 2006; pp 265–271.Google Scholar
  93. 93.
    King, W. P.; Reading, M. Micro fabricated thermal probe for e.g. micro-thermal analysis has heating element with active area electrically connected to conductive traces and forms no spatial overlap between base of probe tip and active area of heating element. US2006254345-A1, 2006.Google Scholar
  94. 94.
    Lee, J.; Beechem, T.; Wright, T. L.; Nelson, B. A.; Graham, S.; King, W. P. Journal of Microelectromechanical Systems 2006, 15, (6), 1644–1655.CrossRefGoogle Scholar
  95. 95.
    Abel, M. R.; Wright, T. L.; King, W. P.; Graham, S. In Thermal metrology of silicon microstructures using Raman spectroscopy, 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, Mar 14–16, 2006; IEEE-Inst Electrical Electronics Engineers Inc:Dallas, TX, 2006; pp 200–208.Google Scholar
  96. 96.
    Carey, V. P.; Chen, G.; Grigoropoulos, C.; Kaviany, M.; Majumdar, A. Nanoscale and Microscale Thermophysical Engineering 2008, 12, (1), 1–60.CrossRefGoogle Scholar
  97. 97.
    Heino, P. Journal of Computational and Theoretical Nanoscience 2007, 4, (5), 896–927.Google Scholar
  98. 98.
    Cahill, D. G.; Goodson, K.; Majumdar, A. Journal of Heat Transfer:Transactions of the ASME 2002, 124, (2), 223–241.CrossRefGoogle Scholar
  99. 99.
    Majumdar, A. Annual Review of Materials Science 1999, 29, 505–585.CrossRefGoogle Scholar
  100. 100.
    Johnson, K. L.. Contact mechanics. Cambridge University Press:Cambridge, 1987.Google Scholar
  101. 101.
    Xu, J. B.; Lauger, K.; Moller, R.; Dransfeld, K.; Wilson, I. H. Journal of Applied Physics 1994, 76, (11), 7209–7216.CrossRefGoogle Scholar
  102. 102.
    Luo, K.; Lederman, M.; Majumdar, A. Microscale Thermophysical Engineering 1997, 1, (4), 333–345.CrossRefGoogle Scholar
  103. 103.
    Gomes, S.; Trannoy, N.; Grossel, P. Measurement Science & Technology 1999, 10, (9), 805–811.CrossRefGoogle Scholar
  104. 104.
    Shen, S.; Narayanaswamy, A.; Chen, G. Nano Letters 2009, 9, (8), 2909–2913.CrossRefGoogle Scholar
  105. 105.
    Timoshenko, S. P.; Goodier, J. N., Theory of elasticity. McGraw-Hill:New York, 1970.Google Scholar
  106. 106.
    Landau, L. D.; Lifshitz, E. M., Theory of elasticity. Theoretical physics, Vol. 7. Butterworth-Heinemann:Oxford, 1976.Google Scholar
  107. 107.
    Mura, T., Micromechanics of defects in solids. Martinus Nijhoff Publishers:Boston, 1987.Google Scholar
  108. 108.
    Carslaw, H. S.; Jaeger, J. C., Conduction of heat in solids. Clarendon Press:Oxford, 1959.Google Scholar
  109. 109.
    Wang, C. H. Thermochimica Acta 2004, 423, (1–2), 89–97.CrossRefGoogle Scholar
  110. 110.
    Sarid, D.. Exploring scanning probe microscopy with mathematica. Willey:Weinheim, 1997.Google Scholar
  111. 111.
    Jesse, S.; Mirman, B.; Kalinin, S. V. Applied Physics Letters 2006, 89, (2), 022906.CrossRefGoogle Scholar
  112. 112.
    Mirman, B.; Kalinin, S. V. Applied Physics Letters 2008, 92, (8), 083102.CrossRefGoogle Scholar
  113. 113.
    Jesse, S.; Mirman, B.; Kalinin, S. V. Applied Physics Letters 2006, 89, (2), 022906.CrossRefGoogle Scholar
  114. 114.
    Lee, J.; King, W. P. Review of Scientific Instruments 2007, 78, (12), 3.CrossRefGoogle Scholar
  115. 115.
    Schlesing, W.; Buhk, M.; Osterhold, M. Progress in Organic Coatings 2004, 49, (3), 197–208.CrossRefGoogle Scholar
  116. 116.
    Stroh, C.; Wang, H.; Bash, R.; Ashcroft, B.; Nelson, J.; Gruber, H.; Lohr, D.; Lindsay, S. M.; Hinterdorfer, P. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (34), 12503–12507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Oak Ridge National Laboratory (ORNL)Oak RidgeUSA

Personalised recommendations