Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry

  • Olga S. Ovchinnikova


Advances in analytical technology have pushed the limits of our understanding of chemical and physical phenomena as new tools create new opportunities for discovery. The levels of sensitivities and signal-to-noise levels of atmospheric pressure mass spectrometry techniques have increased to the point that the chemical content of nanometer-sized volumes of material can be determined. Advances in scanning probe technology, which have resulted in improved stability and material property determination, make interfacing with mass-spectrometry possible. Innovations in probe technology to couple or focus intense light or heat at the probe tip enable new ways to remove and transfer specific and highly localized material from the sample surface to the mass spectrometer. The marrying of these two previously separate fields of study creates a viable pathway for true nanoscale chemical imaging. This chapter will cover the recent advances in mass spectrometry that can most readily be coupled with ambient scanning probes and discuss the state-of-the-art efforts to combine these techniques.


Laser Desorption Corona Discharge Laser Ablation Inductively Couple Plasma Mass Spectrometry Near Field Scanning Optical Microscopy Atomic Force Microscope Probe 


  1. 1.
    Teale, W. D.; Paponov, I. A.; Palme, K. “Auxin in action:signaling, transport and the control of plant growth and development.” Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859.CrossRefGoogle Scholar
  2. 2.
    Ng, C. K. Y.; Carr, K.; McAinsh, M. R.; Powell, B.; Hetherington, A. M. “Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.” Nature 2001, 410, 596–599.CrossRefGoogle Scholar
  3. 3.
    Becker, J. S.; Zoriy, M.; Becker, J. S.; Pickhardt, C.; Przybylsky, J. “Determination of phosphorus and metal in human brain proteins after isolation be gel electrophoresis by laser ablation inductively coupled plasma source mass spectrometry.” J. Anal. Atom. Spectrom. 2004, 19, 149–152.CrossRefGoogle Scholar
  4. 4.
    Rasmussen, A.; Deckert, V. “New dimension in nano-imaging:breaking through the diffraction limit with scanning near-field optical microscopy.” Anal. Bioanal. Chem. 2005, 381, 162–172.CrossRefGoogle Scholar
  5. 5.
    Craig, D. Q. M.; Kett, V. L.; Andrews, C. S.; Royall, P. G. “Pharmaceutical applications of micro-thermal analysis.” J. Pharm. Sci. 2002, 91, 1201–1213.CrossRefGoogle Scholar
  6. 6.
    Winograd, N. “The magic of cluster SIMS.” Anal. Chem. 2005, 77, 142A–149A.CrossRefGoogle Scholar
  7. 7.
    Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli, R. M.. “Organic ion imaging of biological tissue with MALDI and SIMS.” J. Mass Spectrom. 2001, 36, 355–369.CrossRefGoogle Scholar
  8. 8.
    Cornett, D. S.; Reyzer, M. L.; Chaurand, P.; Caprioli, R. M. “MALDI imaging mass spectrometry:molecular snapshots of biochemical systems.” Nat. Methods 2007, 4, 828–833.CrossRefGoogle Scholar
  9. 9.
    Bennighoven, A.; Rudenuer, F. G.; Werner, H. W. Secondary Ion Mass Spectrometry; John Wiley & Sons:New York, 1987.Google Scholar
  10. 10.
    Schweiters, J.; Cramer, H.-G.; Heller, T.; Jurgens, U.; Rulle, H. N.; Heller, T.; Zehnpfennig, J. F.; Bennighoven, A. Secondary Ion Mass Spectrometry Proceeding of the Eight International Conference(SIMS VIII). John Wiley & Sons:Chichester, UK, 1992; p. 497.Google Scholar
  11. 11.
    Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. “New pictogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure.” Anal. Chem. 1973, 45, 936–943.CrossRefGoogle Scholar
  12. 12.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. “Electrospray ionization for mass spectrometry of large biomolecules.” Science 1989, 246, 64–71.CrossRefGoogle Scholar
  13. 13.
    Gray, A. L. “Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry.” Analyst 1985, 110, 551–556.CrossRefGoogle Scholar
  14. 14.
    Novotny, L.; Stranick, S. J. “Near-field optical microscopy and spectroscopy with pointed probes.” Annu. Rev. Chem. 2006, 57, 303–331.CrossRefGoogle Scholar
  15. 15.
    Price, D. M.; Reading, M.; Hanniche, A.; Pollock, H. M. “Micro-thermal analysis:scanning thermal microscopy and localized thermal analysis.” Int. J. Pharm. 1999, 192, 85–96.CrossRefGoogle Scholar
  16. 16.
    Stockle, R.; Setz, P.; Deckert, V.; Lippet, T.; Wokaun, A.; Zenobi, R. “Nanoscale atmospheric pressure laser ablation-mass spectrometry.” Anal. Chem. 2001, 73, 1399–1402.CrossRefGoogle Scholar
  17. 17.
    Schmitz, T. A.; Gamez, G.; Setz, P. D.; Zhu, L.; Zenobi, R. “Towards nanoscale molecular analysis at atmospheric pressure by near-field laser ablation ion trap/time-of-flight mass spectrometer.” Anal. Chem. 2008, 80, 6537–6544.CrossRefGoogle Scholar
  18. 18.
    Meyer, K. A.; Ovchinnikova, O.; Ng, K.; Goeringer, D. E. “Development of scanning surface probe for nanoscale tip-enhanced desorption/ablation.” Rev. Sci. Instrum. 2008, 79, 123710.CrossRefGoogle Scholar
  19. 19.
    Bradshaw, J. A.; Ovchinnikova, O. S.; Meyer, K. A.; Goeringer, D. E. “Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy.” Rapid Commun. Mass Spectrom. 2009, 23, 3781–3786.CrossRefGoogle Scholar
  20. 20.
    Becker, J. S.; Gordunoff, A.; Zoriy, M.; Izmer, A.; Kayser, M. “Evidence of near-field laser ablation inductively coupled plasma mass spectrometry (NF-LA-ICP-MS) at nanometer scale for elemental and isotopic analysis on gels and biological samples.” J. Anal. Atom. Spectrom. 2006, 21, 19–25.CrossRefGoogle Scholar
  21. 21.
    Zoriy, M. V.; Kayser, M.; Becker, J. S. “Possibility of nano-local elemental analysis by near-field laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS):New experimental arrangement and first application.” Int. J. Mass Spectrom. 2008, 273, 151–155.CrossRefGoogle Scholar
  22. 22.
    Price, D. M.; Reading, M.; Smith, R. M.; Pollock, H. M.; Hammiche, A. “Localized evolved gas analysis by micro-thermal analysis.” J. Therm. Anal. Calorim. 2001, 64, 309–314.CrossRefGoogle Scholar
  23. 23.
    Royall, P. G.; Craig, D. Q. M.; Grandy, D. B. “The use of micro-thermal analysis as a means of in situ characterization of pharmaceutical tablet coatings.” Thermochimica Acta, 2001, 380, 165–173.CrossRefGoogle Scholar
  24. 24.
    Williams, J. P.; Scrivens, J. H. “Rapid and accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples.” Rapid Commun. Mass Spectrom. 2005, 19, 3643–3650.CrossRefGoogle Scholar
  25. 25.
    Cooks, R. G.; Gologan, B.; Takats, Z.; Wiseman, J. M.; Cotte-Rodriguez, I. “Method and system for desorption atmospheric pressure chemical ionization.” US Patent Application US2007/0187589A1, August 16, 2007.Google Scholar
  26. 26.
    Song, Y.; Cooks, R. G. “Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents.” Rapid Commun. Mass Spectrom. 2006, 20, 3130–3138.CrossRefGoogle Scholar
  27. 27.
    Haapala, M.; Pol, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. “Desorption atmospheric pressure photoionization.” Anal. Chem. 2008, 79, 7867–7872.CrossRefGoogle Scholar
  28. 28.
    Van Berkel, G.; Pasilis, S.; Ovchinnikova, O. “Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry.” J. Mass Spectrom. 2008, 43, 1161–1180.CrossRefGoogle Scholar
  29. 29.
    Cody, R. B.; Laramée, J. A.; Durst, H. D. “Versatile new ion source for the analysis of materials in open air under ambient conditions.” Anal. Chem. 2005, 77, 2297–2302.CrossRefGoogle Scholar
  30. 30.
    Bell, K. L.; Dalgarno, A.; Kingston, A. E. “Penning ionization by metastable helium atoms.” J. Phys. B (Proc. Phys. Soc.) 1968, 1, 18–22.Google Scholar
  31. 31.
    McEwen, C. N.; Gutteridge, S. “Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method.” J. Am. Soc. Mass Spectrom. 2007, 18, 1274–1278.CrossRefGoogle Scholar
  32. 32.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. “Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments.” Anal. Chem. 2005, 77, 7826–7831.CrossRefGoogle Scholar
  33. 33.
    Vastola, F. J.; Mumma, R. O.; Pirone, A. J. “Analysis of organic salts by laser ionization.” Org. Mass Spectrom. 1970, 3, 101–104.CrossRefGoogle Scholar
  34. 34.
    Gross, J. “Matrix-assisted laser desorption/ionization.” In Mass Spectrometry a Textbook; Springer:Heidelberg, 2004, pp. 411–440.Google Scholar
  35. 35.
    Gunther, D.; Hattendorf, B. “Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry.” Trends Analyt. Chem. 2005, 24, 255–265.CrossRefGoogle Scholar
  36. 36.
    Mokgalaka, N. S.; Gardea-Torresdey, J. L. Laser ablation inductively coupled plasma mass spectrometry:principles and applications. Appl. Spectrosc. Rev. 2006, 41, 131–150.CrossRefGoogle Scholar
  37. 37.
    Becker, J. S.; Zoriy, M.; Becker, J. S.; Dobrowolska, J.; Matusch, A. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomicsw. J. Analyt. Atom. Spectrom. 2007, 22, 736–744.CrossRefGoogle Scholar
  38. 38.
    Zoriy, M. V.; Becker, J. S. “Imaging of elements in thin cross sections of human brain samples by LA-ICP-MS:A study on reproducibility.” Int. J. Mass Spectrom. 2007, 264, (2–3), 175–180.Google Scholar
  39. 39.
    Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S. “Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry.” Int. J. Mass Spectrom. 2006, 257, (1–3), 27–33.Google Scholar
  40. 40.
    Chery, C. C.; Gunther, D.; Cornelis, R.; Vanhaecke, F.; Moens, L. “Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry:Application to selenium.” Electrophoresis 2003, 24, (19–20), 3305–3313.CrossRefGoogle Scholar
  41. 41.
    Wind, M.; Feldmann, I.; Jakubowski, N.; Lehmann, W. D. “Spotting and quantification of phosphoproteins purified by gel electrophoresis and laser ablation-element mass spectrometry with phosphorus-31 detection.” Electrophoresis 2003, 24, (7–8), 1276–1280.CrossRefGoogle Scholar
  42. 42.
    Coon, J. J.; Steele, H. A.; Laipis, P. J.; Harrison, W. W. “Laser desorption-atmospheric pressure chemical ionization:a novel ion source for the direct coupling of polyacrylamide gel electrophoresis to mass spectrometry.” J. Mass Spectrom. 2002, 37, (11), 1163–1167.CrossRefGoogle Scholar
  43. 43.
    Coon, J. J.; Harrison, W. W. “Laser desorption-atmospheric pressure chemical ionization mass spectrometry for the analysis of peptides from aqueous solutions.” Analyt. Chem. 2002, 74, (21), 5600–5605.CrossRefGoogle Scholar
  44. 44.
    Coon, J. J.; McHale, K. J.; Harrison, W. W. “Atmospheric pressure laser desorption/chemical ionization mass spectrometry:a new ionization method based on existing themes.” Rapid Commun. Mass Spectrom. 2002, 16, (7), 681–685.CrossRefGoogle Scholar
  45. 45.
    Coon, J. J.; Steele, H. A.; Laipis, P. J.; Harrison, W. W. “Direct atmospheric pressure coupling of polyacrylamide gel electrophoresis to mass spectrometry for rapid protein sequence analysis.” J. Proteome Res. 2003, 2, (6), 610–617.CrossRefGoogle Scholar
  46. 46.
    Turney, K.; Harrison, W. W. “Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure.” Spectrochim Acta Part B At. Spectrosc. 2006, 61, (6), 634–641.CrossRefGoogle Scholar
  47. 47.
    Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. “Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids.” Rapid Commun. Mass Spectrom. 2005, 19, (24), 3701–3704.CrossRefGoogle Scholar
  48. 48.
    Huang, M. Z.; Hsu, H. J.; Lee, J. Y.; Jeng, J.; Shiea, J. “Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry.” J. Proteome Res. 2006, 5, (5), 1107–1116.CrossRefGoogle Scholar
  49. 49.
    Nemes, P.; Vertes, A. “Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry.” Anal. Chem. 2007, 79, 8098–8106.CrossRefGoogle Scholar
  50. 50.
    Li, Y.; Shrestha, B.; Vertes, A. “Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry.” Anal. Chem. 2007, 79, (2), 523–532.CrossRefGoogle Scholar
  51. 51.
    Doroshenko, V. M.; Laiko, V. V.; Taranenko, N. I.; Berkout, V. D.; Lee, H. S. “Recent developments in atmospheric pressure MALDI mass spectrometry.” Int. J. Mass Spectrom. 2002, 221, (1), 39–58.CrossRefGoogle Scholar
  52. 52.
    Li, Y.; Shrestha, B.; Vertes, A. “Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics.” Analyt. Chem. 2008, 80, 407–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Olga S. Ovchinnikova
    • 1
  1. 1.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations