Skip to main content

Multi-Frequency Atomic Force Microscopy

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

The atomic force microscope (AFM) was invented in 1986 [1], a close relative of another instrument, the scanning tunneling microscope (STM), invented in 1981 [2]. Both fall under the umbrella of techniques and instruments referred to as scanning probe microscopes (SPMs), with the common thread being that a sharp probe is scanned in a regular pattern to map some sample characteristic. Unlike the STM, the AFM can readily image insulating surfaces. Combined with the ability to study a wide variety of samples and sample environments – ambient, liquid, and vacuum – has made AFM the technique of choice for many high resolution surface imaging applications, including imaging with atomic resolution. Since those early days, AFM techniques have become the mainstay of nanoscience and nanotechnology by providing the capability for structural imaging and manipulation on the nanometer and atomic scales. Beyond simple topographic imaging, AFMs have found an extremely broad range of applications for probing electrical, magnetic, and mechanical properties – often at the level of several tens of nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, C.F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters 56 (9), 930–933 (1986).

    Article  Google Scholar 

  2. G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55 (6), 726–735 (1982).

    CAS  Google Scholar 

  3. Y. Martin, C.C. Williams, and H.K. Wickramasinghe, “Atomic force microscope force mapping and profiling on a sub 100-a scale,” Journal of Applied Physics 61 (10), 4723–4729 (1987).

    Article  CAS  Google Scholar 

  4. R.W. Stark, T. Drobek, and W.M. Heckl, “Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes,” Applied Physics Letters 74 (22), 3296–3298 (1999).

    Article  CAS  Google Scholar 

  5. O. Sahin and A. Atalar, “Simulation of higher harmonics generation in tapping-mode atomic force microscopy,” Applied Physics Letters 79 (26), 4455–4457 (2001).

    Article  CAS  Google Scholar 

  6. M. Stark, R.W. Stark, W.M. Heckl et al., “Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy,” Applied Physics Letters 77 (20), 3293–3295 (2000).

    Article  CAS  Google Scholar 

  7. J. Melcher, C. Carrasco, X. Xu et al., “Origins of phase contrast in the atomic force microscope in liquids,” Proceedings of the National Academy of Sciences of the United States of America 106 (33), 13655–13660 (2009).

    Article  Google Scholar 

  8. O. Sahin, S. Magonov, C. Su et al., “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nature Nanotechnology 2 (8), 507–514 (2007).

    Article  Google Scholar 

  9. Y.G. Zheng, R.E. Geer, K. Dovidenko et al., “Quantitative nanoscale modulus measurements and elastic imaging of SnO2 nanobelts,” Journal of Applied Physics 100 (12) (2006).

    Google Scholar 

  10. D.C. Hurley, M. Kopycinska-Muller, and A.B. Kos, “Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy,” Journal of the minerals, Metals and Materials Society 59 (1), 23–29 (2007).

    Google Scholar 

  11. A.B. Kos and D.C. Hurley, “Nanomechanical mapping with resonance tracking scanned probe microscope,” Measurement Science & Technology 19 (1) (2008).

    Google Scholar 

  12. P.A. Yuya, D.C. Hurley, and J.A. Turner, “Contact-resonance atomic force microscopy for viscoelasticity,” Journal of Applied Physics 104 (7) (2008).

    Google Scholar 

  13. D.C. Hurley, J.S. Wiehn, J.A. Turner et al., “Quantitative elastic-property information with acoustic AFM:measurements and modeling,” Proceedings of the SPIE – The International Society for Optical Engineering 4703, 65–73 (2002).

    Google Scholar 

  14. M.P. Nikiforov, S. Jesse, A.N. Morozovska et al., “Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy,” Nanotechnology 20 (39) (2009).

    Google Scholar 

  15. S. Jesse, M.P. Nikiforov, L.T. Germinario et al., “Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe,” Applied Physics Letters 93 (7) (2008).

    Google Scholar 

  16. S.R. Cohen, N. Apter, S. Jesse et al., “AFM investigation of mechanical properties of dentin,” Israel Journal of Chemistry 48 (2), 65–72 (2008).

    Article  CAS  Google Scholar 

  17. S. Jesse, S.V. Kalinin, R. Proksch et al., “The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale,” Nanotechnology 18 (43) (2007).

    Google Scholar 

  18. H.J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope:Technique, interpretation and applications,” Surface Science Reports 59 (1–6), 1–152 (2005).

    Article  CAS  Google Scholar 

  19. M. Farshchi-Tabrizi, M. Kappl, Y.J. Cheng et al., “On the adhesion between fine particles and nanocontacts:An atomic force microscope study,” Langmuir 22 (5), 2171–2184 (2006).

    Article  CAS  Google Scholar 

  20. S. Chanmin, L. Huang, K. Kjoller et al., “Studies of tip wear processes in tapping mode atomic force microscopy,” Ultramicroscopy 97 (1–4), 135–144 (2003).

    Google Scholar 

  21. T.R. Rodriguez and R. Garcia, “Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever,” Applied Physics Letters 84 (3), 449–451 (2004).

    Article  CAS  Google Scholar 

  22. R. Proksch, “Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy,” Applied Physics Letters 89 (11), 3 (2006).

    Article  CAS  Google Scholar 

  23. U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers:theory and experiment,” Review of Scientific Instruments 67 (9), 3281–3293 (1996).

    Article  CAS  Google Scholar 

  24. J.P. Cleveland, B. Anczykowski, A.E. Schmid et al., “Energy dissipation in tapping-mode atomic force microscopy,” Applied Physics Letters 72 (20), 2613–2615 (1998).

    Article  CAS  Google Scholar 

  25. B.J. Rodriguez, C. Callahan, S.V. Kalinin et al., “Dual-frequency resonance-tracking atomic force microscopy,” Nanotechnology 18 (47) (2007).

    Google Scholar 

  26. D. Rupp, U. Rabe, S. Hirsekorn et al., “Nonlinear contact resonance spectroscopy in atomic force microscopy,” Journal of Physics D:Applied Physics 40 (22), 7136–7145 (2007).

    Article  CAS  Google Scholar 

  27. R. Garcia and R. Perez, “Dynamic atomic force microscopy methods,” Surface Science Reports 47 (6–8), 197–301 (2002).

    Article  CAS  Google Scholar 

  28. U. Rabe, in Applied Scanning Probe Methods II, edited by B. Bushan and H. Fuchs (Springer, Berlin, 2006), Vol. II, p. 37.

    Chapter  Google Scholar 

  29. O. Kolosov and K. Yamanaka, “Nonlinear detection of ultrasonic vibrations in an atomic force microscope,” Japanese Journal of Appplied Physics Part 2 [Letters] 32 (8A), L1095–1098 (1993).

    Article  CAS  Google Scholar 

  30. K. Yamanaka, H. Ogiso, and O. Kolosov, “Ultrasonic force microscopy for nanometer resolution subsurface imaging,” Applied Physics Letters 64 (2), 178–180 (1994).

    Article  CAS  Google Scholar 

  31. K. Yamanaka, H. Ogiso, and O. Kolosov, “Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (5B), 3197–3203 (1994).

    Google Scholar 

  32. K. Yamanaka, “Ultrasonic force microscopy,” MRS Bulletin 21 (10), 36–41 (1996).

    CAS  Google Scholar 

  33. A. Gruverman, O. Auciello, J. Hatano et al., “Scanning force microscopy as a tool for nanoscale study of ferroelectric domains,” Ferroelectrics 184 (1–4), 11–20 (1996)

    Article  CAS  Google Scholar 

  34. A. Gruverman, O. Kolosov, J. Hatano et al., “Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy,” Journal of Vacuum Science & Technology B [Microelectronics and Nanometer Structures] 13 (3), 1095–1099 (1995).

    Article  CAS  Google Scholar 

  35. A. Hammiche, M. Reading, H.M. Pollock et al., “Localized thermal analysis using a miniaturized resistive probe,” Review of Scientific Instruments 67 (12), 4268–4274 (1996).

    Article  CAS  Google Scholar 

  36. A. Hammiche, D.J. Hourston, H.M. Pollock et al., 1996 (unpublished).

    Google Scholar 

  37. D. Hurley, in Applied Scanning Probe Methods, edited by B. Bushan, H. Fuchs, and H. Yamada (Springer, Berlin, 2009), Vol. XI.

    Google Scholar 

  38. J.N. Goodier S.P. Timoshenko, Theory of Elasticity. (McGraw-Hill, London, 1970).

    Google Scholar 

  39. R. Hillenbrand, M. Stark, and R. Guckenberger, “Higher-harmonics generation in tapping-mode atomic-force microscopy:Insights into the tip–sample interaction,” Applied Physics Letters 76 (23), 3478–3480 (2000).

    Article  CAS  Google Scholar 

  40. R. Proksch, Patent No. 7,603,891 B2 (2009).

    Google Scholar 

  41. D.J.S. Hulmes, A. Miller, D.A.D. Parry et al., “Analysis of primary structure of collagen for origins of molecular packing,” Journal of Molecular Biology 79 (1), 137–148 (1973).

    Article  CAS  Google Scholar 

  42. A.V. Kajava, “Molecular packing in type-I collagen fibrils – a model with neighboring collagen molecules aligned in axial register,” Journal of Molecular Biology 218 (4), 815–823 (1991).

    Article  CAS  Google Scholar 

  43. J.W. Li, J.P. Cleveland, and R. Proksch, “Bimodal magnetic force microscopy:Separation of short and long range forces,” Applied Physics Letters 94 (16) (2009).

    Google Scholar 

  44. D. Ziegler, J. Rychen, N. Naujoks et al., “Compensating electrostatic forces by single-scan Kelvin probe force microscopy,” Nanotechnology 18 (22) (2007).

    Google Scholar 

  45. B.J. Rodriguez, S. Jesse, S. Habelitz et al., “Intermittent contact mode piezoresponse force microscopy in a liquid environment,” Nanotechnology 20 (19) (2009).

    Google Scholar 

  46. D. Passeri, A. Bettucci, M. Germano et al., “Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique,” Applied Physics Letters 88 (12) (2006).

    Google Scholar 

  47. A.P. French, Vibrations and Waves. (CRC, Florida, 1971).

    Google Scholar 

  48. J. Tamayo and R. Garcia, “Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy,” Applied Physics Letters 73 (20), 2926–2928 (1998).

    Article  CAS  Google Scholar 

  49. T.R. Albrecht, P. Grutter, D. Horne et al., “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” Journal of Applied Physics 69 (2), 668–673 (1991).

    Article  Google Scholar 

  50. F.J. Giessibl, “Atomic-force microscopy in ultrahigh-vacuum,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (6B), 3726–3734 (1994).

    CAS  Google Scholar 

  51. E. Meyer, L. Howald, R. Luthi et al., “Scanning probe microscopy on the surface of SI(111),” Journal of Vacuum Science & Technology B 12 (3), 2060–2063 (1994).

    Article  Google Scholar 

  52. H. Yamada, K. Kobayashi, T. Fukuma et al., “Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy,” Applied Physics Express 2 (9) (2009).

    Google Scholar 

  53. J.I. Kilpatrick, A. Gannepalli, J.P. Cleveland et al., “Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning,” Review of Scientific Instruments 80 (2) (2009).

    Google Scholar 

  54. T. Fukuma, K. Kobayashi, K. Matsushige et al., “True atomic resolution in liquid by frequency-modulation atomic force microscopy,” Applied Physics Letters 87 (3) (2005)

    Google Scholar 

  55. T. Fukuma, M. Kimura, K. Kobayashi et al., “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy,” Review of Scientific Instruments 76 (5) (2005).

    Google Scholar 

  56. F.J. Giessibl, “Advances in atomic force microscopy,” Reviews of Modern Physics 75 (3), 949–983 (2003).

    Article  CAS  Google Scholar 

  57. F.J. Giessibl, S. Hembacher, H. Bielefeldt et al., “Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy,” Science 289 (5478), 422–425 (2000).

    Article  CAS  Google Scholar 

  58. M. Ternes, C.P. Lutz, C.F. Hirjibehedin et al., “The force needed to move an atom on a surface,” Science 319 (5866), 1066–1069 (2008).

    Article  CAS  Google Scholar 

  59. K. Yamanaka, Y. Maruyama, T. Tsuji et al., “Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy,” Applied Physics Letters 78 (13), 1939–1941 (2001).

    Article  CAS  Google Scholar 

  60. K. Kobayashi, H. Yamada, and K. Matsushige, “Resonance tracking ultrasonic atomic force microscopy,” Surface and Interface Analysis 33 (2), 89–91 (2002).

    Article  CAS  Google Scholar 

  61. R. Proksch and S. Kalinin, “Energy dissipation measurements in frequency modulated scanning probe microscopy,” Nanotechnology, submitted (2009).

    Google Scholar 

  62. S. Jesse, P. Maksymovych, and S.V. Kalinina, “Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics,” Applied Physics Letters 93 (11) (2008).

    Google Scholar 

  63. A. Gannepalli and R. Proksch, “Submitted,” (2009).

    Google Scholar 

  64. D. Platz, E.A. Tholen, D. Pesen et al., “Intermodulation atomic force microscopy,” Applied Physics Letters 92. (15) (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Proksch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Proksch, R. (2010). Multi-Frequency Atomic Force Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_5

Download citation

Publish with us

Policies and ethics