Advertisement

Scanning Ion Conductance Microscopy

  • Johannes Rheinlaender
  • Tilman E. Schäffer
Chapter

Abstract

In 1981, the age of the scanning probe microscopes (SPMs) began when Binnig, Rohrer, and cowokers developed the first scanning tunneling microscope (STM) [1]. Their setup was based on measuring an electrical tunneling current between a sharp metal tip and a conducting sample. For the first time, a sample surface could be imaged with true atomic resolution in real space. The STM launched the development of several other types of SPMs. In general, these microscopes consist of a small, submicrometer probe, which senses a certain physical interaction with the sample and which is scanned over the sample to generate an image. For example, Pohl et al. invented the scanning near-field optical microscope (SNOM) in 1984 [2], which uses an evanescent electromagnetic field in the subwavelength range to image the sample. In 1986, Binnig and co-workers developed the atomic force microscope (AFM), which is based on measuring the mechanical forces between a sharp tip and the sample [3]. The AFM is not limited to conducting or transparent samples and has become one of the most important tools in nanoscale science. The AFM also works in aqueous environments, such as buffer solutions and so is well suited for biological samples [4]. Since then, several related SPMs have been developed, such as the magnetic force microscope [5,6] the electrical force microscope [7], and the scanning electrochemical force microscope (SECM) [8].

Keywords

Scanning Tunneling Microscope Sample Distance Magnetic Force Microscope Distance Control Piezo Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Binnig G, Rohrer H (1982) Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:57–61.CrossRefGoogle Scholar
  2. 2.
    Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy:image recording with resolution λ/20. Appl. Phys. Lett. 44(7):651–653.CrossRefGoogle Scholar
  3. 3.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys. Rev. Lett. 56(9):930–933.CrossRefGoogle Scholar
  4. 4.
    Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589.CrossRefGoogle Scholar
  5. 5.
    Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt HJ (1987) Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62(10):4293–4295.CrossRefGoogle Scholar
  6. 6.
    Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000Å resolution. Appl. Phys. Lett. 50(20):1455–1457.CrossRefGoogle Scholar
  7. 7.
    Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52(13):1103–1105.CrossRefGoogle Scholar
  8. 8.
    Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61(2):132–138.CrossRefGoogle Scholar
  9. 9.
    Prater CB, Drake B, Gould SAC, Hansma HG, Hansma PK (1990) Scanning ion-conductance microscope and atomic force microscope. Scanning 12(1):50–52.Google Scholar
  10. 10.
    Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643.CrossRefGoogle Scholar
  11. 11.
    Korchev YE, Milovanovic M, Bashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188(Pt 1):17–23.CrossRefGoogle Scholar
  12. 12.
    Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Microscopy 1:187–200.Google Scholar
  13. 13.
    Olin H (1994) Design of a scanning probe microscope. Meas. Sci. Technol. 5:976–984.CrossRefGoogle Scholar
  14. 14.
    Pastré D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90(1):13–19.CrossRefGoogle Scholar
  15. 15.
    Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the internal and external pore structure of membranes in fluid:tapping mode scanning ion conductance microscopy. Biophys. J. 71(4):2155–2157.CrossRefGoogle Scholar
  16. 16.
    Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9(8):1731–1740.CrossRefGoogle Scholar
  17. 17.
    Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous measurement of Ca2+ and cellular dynamics:combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 81(3):1759–1764.CrossRefGoogle Scholar
  18. 18.
    Rheinlaender J, Schäffer TE (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 105(9):094905.CrossRefGoogle Scholar
  19. 19.
    Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE (2009) Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy. Langmuir 25(5):3022–3028.CrossRefGoogle Scholar
  20. 20.
    Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73(2):653–658.CrossRefGoogle Scholar
  21. 21.
    Böcker M, Anczykowski B, Wegener J, Schäffer TE (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18(14):145505–145506.CrossRefGoogle Scholar
  22. 22.
    Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CR, Rayment T, Klenerman D (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78(5):2675–2679.CrossRefGoogle Scholar
  23. 23.
    Mannelquist A, Iwamoto H, Szabo G, Shao Z (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl. Phys. Lett. 78(14):2076–2078.CrossRefGoogle Scholar
  24. 24.
    Mannelquist A, Iwamoto H, Szabo G, Shao Z (2002) Near field optical microscopy in aqueous solution:implementation and characterization of a vibrating probe. J. Microsc. 205(Pt 1):53–60.CrossRefGoogle Scholar
  25. 25.
    Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. Engl. 45(14):2212–2216.CrossRefGoogle Scholar
  26. 26.
    Bockris JO, Reddy AKN, Modern Electrochemistry:Electrodics in Chemistry, Engineering, Biology, and Environmental Science. 2000, New York:Plenum Publishing Corporation.Google Scholar
  27. 27.
    Bruus H, Theoretical Microfluidics. Oxford Master Series in Physics. 2007, New York:Oxford University Press.Google Scholar
  28. 28.
    Brown KT, Flaming DG, Advanced Micropipette Techniques for Cell Physiology. 1986, New York:Wiley.Google Scholar
  29. 29.
    Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipette. Anal. Chem. 74(6):1380–1385.CrossRefGoogle Scholar
  30. 30.
    Ying L, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys. J. 86(2):1018–1027.CrossRefGoogle Scholar
  31. 31.
    Hall JE (1975) Access resistance of a small circular pore. J. Gen. Physiol. 66:531–532.CrossRefGoogle Scholar
  32. 32.
    COMSOL, COMSOL Multiphysics. 2007, Stockholm, Sweden:COMSOL AB.Google Scholar
  33. 33.
    Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys. J. 78(1):451–457.CrossRefGoogle Scholar
  34. 34.
    Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat. Cell. Biol. 2(9):616–619.CrossRefGoogle Scholar
  35. 35.
    Gitter AH, Bertog M, Schulzke J-D, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Eur. J. Physiol. 434(6):830–840.CrossRefGoogle Scholar
  36. 36.
    Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy – a method to investigate cultured hippocampal cells. J. Neurosci. Methods 116(2):113–117.CrossRefGoogle Scholar
  37. 37.
    Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J. Microsc. 212(Pt 2):144–151.CrossRefGoogle Scholar
  38. 38.
    Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J. Bacteriol. 172(11):6589–6595.Google Scholar
  39. 39.
    Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys. J. 66(6):2159–2165.CrossRefGoogle Scholar
  40. 40.
    Borgwarth K, Ebling DG, Heinze J (1994) Scanning electrochemical microscopy:a new scanning mode based on convective effects. Ber. Bunsenges. Phys. Chem. 98(10):1317–1321.Google Scholar
  41. 41.
    Novak P, Li C, Shevshuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:279–281.CrossRefGoogle Scholar
  42. 42.
    Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys. J. 83(6):3296–303.CrossRefGoogle Scholar
  43. 43.
    Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA 100(10):5819–5822.CrossRefGoogle Scholar
  44. 44.
    Gorelik J, Zhang A, Shevchuk A, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, W ECR, Klenerman D, Korchev YE (2002) The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 217:101–108.CrossRefGoogle Scholar
  45. 45.
    Bruckbauer A, Ying LM, Rothery AM, Korchev YE, Klenerman D (2002) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Anal. Chem. 74(11):2612–2616.CrossRefGoogle Scholar
  46. 46.
    Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) A novel light source for SICM-SNOM of living cells. J. Microsc. 209:94–101.CrossRefGoogle Scholar
  47. 47.
    Gorelik J, Shevchuk AI, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging:application to single virus-like particle entry into a cell. Proc. Natl Acad. Sci. USA 99(25):16018–16023.CrossRefGoogle Scholar
  48. 48.
    Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics:from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11):1377–1386.CrossRefGoogle Scholar
  49. 49.
    Shalom S, Lieberman K, Lewis A, Cohen SR (1992) A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Instrum. 63(9):4061–4065.CrossRefGoogle Scholar
  50. 50.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13):1738–1740.CrossRefGoogle Scholar
  51. 51.
    Putman CAJ, Van der Werf KO, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64(18):2454–2456.CrossRefGoogle Scholar
  52. 52.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science 5000:1468–1470.CrossRefGoogle Scholar
  53. 53.
    Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett. 60:2957–2959.CrossRefGoogle Scholar
  54. 54.
    Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20):2484–2486.CrossRefGoogle Scholar
  55. 55.
    Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66(14):1842–1844.CrossRefGoogle Scholar
  56. 56.
    Brunner R, Hering O, Marti O, Hollricher O (1997) Piezoelectrical shear-force control on soft biological samples in aqueous solution. Appl. Phys. Lett. 71(25):3628–3630.CrossRefGoogle Scholar
  57. 57.
    Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Shear force imaging of soft samples in liquid using a diving bell concept. Appl. Phys. Lett. 83(24):5083–5085.CrossRefGoogle Scholar
  58. 58.
    Rensen WHJ, van Hulst NF, Kammer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl. Phys. Lett. 77(10):1557–1559.CrossRefGoogle Scholar
  59. 59.
    Sánchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Praveen A, Gorelik J, Frolenkov G, Benham C, Lab M, Ostanin V, Schäffer TE, Klenerman D, Korchev YE (2008) Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys. J. 95(6):3017–3027.CrossRefGoogle Scholar
  60. 60.
    Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E (1999) Fountain pen nanochemistry:atomic force control of chrome etching. Appl. Phys. Lett. 75(17):2689–2691.CrossRefGoogle Scholar
  61. 61.
    Müller A-D, Müller F, Hietschold M (1998) Electrochemical pattern formation in a scanning near-field optical microscope. Appl. Phys. A 66:453–456.CrossRefGoogle Scholar
  62. 62.
    Müller A-D, Müller F, Hietschold M (2000) Localized electrochemical deposition of metals using micropipettes. Thin Solid Films 366:32–36.CrossRefGoogle Scholar
  63. 63.
    Zhang H, Wu L, Huang F (1999) Electrochemical microprocess by scanning ionconductance microscopy. J. Vac. Sci. Technol. B 17(2):269–272.CrossRefGoogle Scholar
  64. 64.
    Hong M-H, Kim KH, Bae J, Jhe W (2000) Scanning nanolithography using a material-filled nanopipette. Appl. Phys. Lett. 77(16):2604–2606.CrossRefGoogle Scholar
  65. 65.
    Larson BJ, Gillmor SD, Lagally MG (2004) Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev. Sci. Instrum. 75(4):832–836.CrossRefGoogle Scholar
  66. 66.
    Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. 117(42):7014–7019.CrossRefGoogle Scholar
  67. 67.
    Bruckbauer A, Zhou D, Ying L, Korchev Y, Abell C, Klenerman D (2003) Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125:9834–9839.CrossRefGoogle Scholar
  68. 68.
    Taha H, Marks RS, Levi AG, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein ­printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83(5):1041–1043.CrossRefGoogle Scholar
  69. 69.
    Schrlau MG, Falls EM, Ziober BL, Bau HM (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008(1):015101–015105.CrossRefGoogle Scholar
  70. 70.
    Laforge FO, Carpino J, Rotenberg SA, Mirkin MV (2007) Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104(29):11895–11900.CrossRefGoogle Scholar
  71. 71.
    Krishnamurthy V, Luk KY, Cornell B, Prashar J, di Maio IL, Islam H, Battle AR, Valenzuela SM, Martin DK (2007) Gramicidin ion channel-based biosensors:construction, stochastic dynamical models, and statistical detection algorithms. IEEE Sen. J. 7(9):1281–1288.CrossRefGoogle Scholar
  72. 72.
    Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D (2006) A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 128(51):16462–16463.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations