Excitation and Mechanisms of Single Molecule Reactions in Scanning Tunneling Microscopy

  • Peter Maksymovych


Scanning tunneling microscopy (STM) achieves atomic-scale resolution due to the exponential dependence of the tunneling current on the distance from the tip to the surface. The majority of tunneling electrons traverse the junction elastically via coherent quantum mechanical coupling between the electronic states of the tip and the conducting substrate. However, a small fraction of tunneling electrons undergoes inelastic scattering, losing parts of their energy to available dynamic modes in the junction with the energy that is less or equal to the electrochemical potential of one of the tunneling leads relative to the Fermi level of the other. Depending on the atomic electronic structure of the tunneling junction and the tunneling conditions, the excited processes may include localized plasmons with subsequent photon emission [1x2013;4], frustrated [5] and free [6] adsorbate motion, formation of charged species [7], molecular fluorescence [8], rotation [9], vibration [10], bond breaking [11, 12], and isomerization [13, 14]. The STM can therefore glimpse far beyond the local electronic structure of the junction and it has been extensively used to explore the dynamic functionality of surfaces, nanoparticles, and single molecules.


Scan Tunneling Microscopy Reaction Coordinate Tunneling Junction Tunneling Current Tunneling Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writing of this review was done at the Center for Nanophase Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy.


  1. 1.
    Aizpurua, J., Hoffmann, G., Apell, S., Berndt, R. “Electromagnetic coupling on an atomic scale”. Phys. Rev. Lett. 89 (2002) 156803.CrossRefGoogle Scholar
  2. 2.
    Benia, H. M., Nilius, N., Freund, H. “Photon mapping of MgO thin films with an STM”. Surf. Sci. 601 (2007) L55.CrossRefGoogle Scholar
  3. 3.
    Schull, G., Becker, M., Berndt, R. “Imaging confined electrons with plasmonic light”. Phys. Rev. Lett. 101 (2008) 136801.CrossRefGoogle Scholar
  4. 4.
    Berndt, R., Gimzewski, J., Johannson, P. “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces”. Phys. Rev. Lett. 67 (1991) 3796.CrossRefGoogle Scholar
  5. 5.
    Pascual, J., Jackiw, J., Song, Z., Weiss, P., Conrad, H., Rust, H. “Adsorbate-substrate vibrational modes of benzene on Ag(110) resolved with scanning tunneling spectroscopy”. Phys. Rev. Lett. 86 (2001) 1050.CrossRefGoogle Scholar
  6. 6.
    Stroscio, J. A., Celotta, R. J. “Controlling the dynamics of a single atom in lateral atom manipulation”. Science 306 (2004) 242.CrossRefGoogle Scholar
  7. 7.
    Repp, J., Meyer, G., Olsson, F., Persson, M. “Controlling the charge state of individual gold adatoms”. Science 305 (2004) 493.CrossRefGoogle Scholar
  8. 8.
    Qiu, X. H., Nazin, G., Ho, W. “Vibrationally resolved fluorescence excited with submolecular precision”. Science 299 (2003) 542.CrossRefGoogle Scholar
  9. 9.
    Henningsen, N., Franke, K., Torrente, I., Schulze, G., Priewisch, B., Ruck-Braun, K., Dokic, J., Klamroth, T., Saalfrank, P., Pascual, J. “Inducing the rotation of a single phenyl ring with tunneling electrons”. J. Phys. Chem. C 111 (2007) 14843.CrossRefGoogle Scholar
  10. 10.
    Sainoo, Y., Kim, Y., Okawa, T., Komeda, T., Shigekawa, H., Kawai, M. “Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy processes:Examination through action spectra of cis-2-butene on Pd(110)”. Phys. Rev. Lett. 95 (2005) 246102.CrossRefGoogle Scholar
  11. 11.
    Ho, W. “Single-molecule chemistry”. J. Chem. Phys. 117 (2002) 11033.CrossRefGoogle Scholar
  12. 12.
    Pascual, J. I. “Single molecule vibrationally mediated chemistry”. Eur. Phys. J. D 35 (2005) 327.CrossRefGoogle Scholar
  13. 13.
    Alemani, M., Peters, M. V., Hecht, S., Rieder, K., Moresco, F., Grill, L. “Electric field-induced isomerization of azobenzene by STM”. J. Am. Chem. Soc. 128 (2006) 14446.CrossRefGoogle Scholar
  14. 14.
    Parschau, M., Passerone, D., Rieder, K., Hug, H. J., Ernst, K. “Switching the chirality of single adsorbate complexes”. Angew. Chem. Int. Ed. 48 (2009) 4065.CrossRefGoogle Scholar
  15. 15.
    Stipe, B., Rezaei, M., Ho, W., Gao, S., Persson, M., Lundqvist, B. “Single-molecule dissociation by tunneling electrons”. Phys. Rev. Lett. 78 (1997) 4410.CrossRefGoogle Scholar
  16. 16.
    Gao, S., Persson, M., Lundqvist, B. “Theory of atom transfer with a scanning tunneling microscope”. Phys. Rev. B 55 (1997) 4825.CrossRefGoogle Scholar
  17. 17.
    Komeda, T., Kim, Y., Kawai, M., Persson, B., Ueba, H. “Lateral hopping of molecules induced by excitation of internal vibration mode”. Science 295 (2002) 2055.CrossRefGoogle Scholar
  18. 18.
    Gaudioso, J., Lee, H., Ho, W. “Vibrational analysis of single molecule chemistry:Ethylene dehydrogenation on Ni(110)”. J. Am. Chem. Soc. 121 (1999) 8479.CrossRefGoogle Scholar
  19. 19.
    Heinrich, A. J. “Molecule cascades”. Science 1381 (2002) 1381.CrossRefGoogle Scholar
  20. 20.
    Mayne, A. J., Dujardin, G., Comtet, G., Riedel, D.. “Electronic control of single-molecule dynamics”. Chem. Rev. 106 (2006) 4355.CrossRefGoogle Scholar
  21. 21.
    Maksymovych, P., Sorescu, D. C., Yates, J. T. “Methanethiolate adsorption site on Au(111):A combined STM/DFT study at the single-molecule level”. J. Phys. Chem. B 110 (2006) 21161.CrossRefGoogle Scholar
  22. 22.
    Maksymovych, P., Yates, J. T. “Propagation of conformation in the surface-aligned dissociation of single CH3SSCH3 molecules on Au(111)”. J. Am. Chem. Soc. 128 (2006) 10642.CrossRefGoogle Scholar
  23. 23.
    Rettner, C., Auerbach, D., Tully, J., Kleyn, A. “Chemical dynamics at the gas-surface interface”. J. Phys. Chem. 100 (1996) 13021.CrossRefGoogle Scholar
  24. 24.
    Harris, A., Rothberg, L., Dhar, L., Levinos, N., Dubois, L. “Vibrational-energy relaxation of a polyatomic adsorbate on a metal-surface-methyl thiolate (CH3S) on Ag(111)”. J. Chem. Phys. 94 (1991) 2438.CrossRefGoogle Scholar
  25. 25.
    Zhou, X., Zhu, X., White, J. “Photochemistry at adsorbate metal interfaces”. Surf. Sci. Rep. 13 (1991) 73.CrossRefGoogle Scholar
  26. 26.
    Donhauser, Z. J., Mantooth, B. A., Kelly, K. F., Bumm, L. A., Monnell, J. D., Stapleton, J. J., Price, D. W., Rawlett, A. M., Allara, D. L., Tour, J. M., Weiss, P. “Conductance switching in single molecules through conformational changes”. Science 292 (2001) 2303.CrossRefGoogle Scholar
  27. 27.
    Xie, X. S. “Single-molecule spectroscopy and dynamics at room temperature”. Acc. Chem. Res. 29 (1996) 598.CrossRefGoogle Scholar
  28. 28.
    Moerner, W. E., Orrit, M. “Illuminating single molecules in condensed matter”. Science 283 (1999) 1670.CrossRefGoogle Scholar
  29. 29.
    Swartzentruber, B. “Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy”. Phys. Rev. Lett. 76 (1996) 459.CrossRefGoogle Scholar
  30. 30.
    Sloan, P. A., Palmer, R. E. “Tip-state control of rates and branching ratios in atomic manipulation”. Nano Lett. 5 (2005) 835.CrossRefGoogle Scholar
  31. 31.
    Shen, T., Wang, C., Abeln, G., Tucker, J., Lyding, J., Avouris, P., Walkup, R. “Atomic-scale desorption through electronic and vibrational-excitation mechanisms”. Science 268 (1995) 1590.CrossRefGoogle Scholar
  32. 32.
    Maksymovych, P., Sorescu, D. C., Jordan, K. D., Yates, J. T. “Collective reactivity of molecular chains self-assembled on a surface”. Science 322 (2008) 1664.CrossRefGoogle Scholar
  33. 33.
    Sloan, P. A., Palmer, R. E. “Two-electron dissociation of single molecules by atomic manipulation at room temperature”. Nature 434 (2005) 367.CrossRefGoogle Scholar
  34. 34.
    Stipe, B., Rezaei, M. A., Ho, W. “Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity”. Phys. Rev. Lett. 82 (1999) 1724.CrossRefGoogle Scholar
  35. 35.
    Rezaei, M. A., Stipe, B. C. “Imaging the atomically resolved dissociation of D2S on Si(100) from 80 to 300 K”. J. Chem. Phys. 110 (1999) 3548.CrossRefGoogle Scholar
  36. 36.
    Lauhon, L. J., Ho, W. “The initiation and characterization of single bimolecular reactions with a STM”. Faraday Discuss. 117 (2000) 249.CrossRefGoogle Scholar
  37. 37.
    Troisi, A., Ratner, M. A. “Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions”. J. Chem. Phys. 125 (2006) 214709.CrossRefGoogle Scholar
  38. 38.
    Gagliardi, A., Solomon, G. C., Pecchia, A., Frauenheim, T., Di Carlo, A., Hush, N. S., Reimers, J. R. “A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction”. Phys. Rev. B 75 (2007) 174306.CrossRefGoogle Scholar
  39. 39.
    Lorente, N., Persson, M., Lauhon, L., Ho, W. “Symmetry selection rules for vibrationally inelastic tunneling”. Phys. Rev. Lett. 86 (2001) 2593.CrossRefGoogle Scholar
  40. 40.
    Paulsson, M., Frederiksen, T., Ueba, H., Lorente, N., Brandbyge, M. “Unified description of inelastic propensity rules for electron transport through nanoscale junctions”. Phys. Rev. Lett. 100 (2008) 226604.CrossRefGoogle Scholar
  41. 41.
    Samal, P., Harbola, K. “Exploring foundations of time-independent density functional theory for excited states”. J. Phys. B 39 (2006) 4065.CrossRefGoogle Scholar
  42. 42.
    Stipe, B., Rezaei, M., Ho, W. “Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule”. Phys. Rev. Lett. 81 (1998) 1263.CrossRefGoogle Scholar
  43. 43.
    Silien, C., Liu, N., Ho, W., Maddox, J. B., Mukamel, S., Liu, B., Bazan, G. C. “Reversible switching among three adsorbate configurations in a single [2.2] paracyclophane-based molecule”. Nano Lett. 8 (2008) 208.CrossRefGoogle Scholar
  44. 44.
    Simic-Milosevic, V., Mehlhorn, M., Rieder, K., Meyer, J., Morgenstern, K. “Electron induced ortho-meta isomerization of single molecules”. Phys. Rev. Lett. 98 (2007) 116102.CrossRefGoogle Scholar
  45. 45.
    Komeda, T., Kim, Y., Fujita, Y., Sainoo, Y., Kawai, M. “Local chemical reaction of benzene on Cu110 via STM-induced excitation”. J. Chem. Phys. 120 (2004) 5347.CrossRefGoogle Scholar
  46. 46.
    Mii, T., Tikhodeev, S., Ueba, H. “Theory of vibrational tunneling spectroscopy of adsorbates on metal surfaces”. Surf. Sci. 502 (2002) 26.CrossRefGoogle Scholar
  47. 47.
    Mii, T., Tikhodeev, S., Ueba, H. “Spectral features of inelastic electron transport via a localized state”. Phys. Rev. B 68 (2003) 205406.CrossRefGoogle Scholar
  48. 48.
    Tal, O., Krieger, M., Leerink, B., van Ruitenbeek, J. M. “Electron-vibration interaction in single-molecule junctions:From contact to tunneling regimes”. Phys. Rev. Lett. 100 (2008) 196804.CrossRefGoogle Scholar
  49. 49.
    Frederiksen, T., Paulsson, M., Brandbyge, M., Jauho, A. “Inelastic transport theory from first principles:Methodology and application to nanoscale devices”. Phys. Rev. B 75 (2007) 205413.CrossRefGoogle Scholar
  50. 50.
    Frederiksen, T., Paulsson, M., Brandbyge, M, Jauho, A. “A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction”. Phys. Rev. B 75 (2007) 174306.CrossRefGoogle Scholar
  51. 51.
    de La Vega, L., Martin-Rodero, A., Agrait, N., Yeyati, A. L. “Universal features of electron-phonon interactions in atomic wires”. Phys. Rev. B 73 (2006) 075428.CrossRefGoogle Scholar
  52. 52.
    Lorente, N., Persson, M. “Theory of single molecule vibrational spectroscopy and microscopy”. Phys. Rev. Lett. 85 (2000) 2997.CrossRefGoogle Scholar
  53. 53.
    Maksymovych, P., Yates, J. T., Jr. “Unexpected spontaneous formation of CO clusters on the Au(111) surface”. Chem. Phys. Lett. 421 (2006) 473.CrossRefGoogle Scholar
  54. 54.
    Lee, H. J., Ho, W. “Single-bond formation and characterization with a scanning tunneling microscope”. Science 286 (1999) 1719.CrossRefGoogle Scholar
  55. 55.
    Riedel, D., Bocquet, M., Lesnard, H., Lastapis, M., Lorente, N., Sonnet, P., Dujardin, G. “Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface”. J. Am. Chem. Soc. 131 (2009) 7344.CrossRefGoogle Scholar
  56. 56.
    Ohara, M., Kim, Y., Kawai, M. “Controlling the reaction and motion of a single molecule by vibrational excitation”. Chem. Phys. Lett. 426 (2006) 357.CrossRefGoogle Scholar
  57. 57.
    Ueba, H., Persson, B. N. J. “Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope”. Phys. Rev. B 75 (2007) 041403.CrossRefGoogle Scholar
  58. 58.
    Pascual, J. I., Lorente, N., Song, Z., Conrad, H., Rust, H. “Selectivity in vibrationally mediated single-molecule chemistry”. Nature 423 (2003) 525.CrossRefGoogle Scholar
  59. 59.
    Stroscio, J. A., Tavazza, F., Crain, J. N., Celotta, R. J., Chaka, A. M. “Electronically induced atom motion in engineered CoCun nanostructures”. Science 313 (2006) 948.CrossRefGoogle Scholar
  60. 60.
    Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B., Perez-Murano, F., Grey, F. “STM-induced hydrogen desorption via a hole resonance”. Phys. Rev. Lett. 80 (1998) 2618.CrossRefGoogle Scholar
  61. 61.
    Iancu, V., Hla, S. “Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules”. Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 13718.CrossRefGoogle Scholar
  62. 62.
    Henningsen, N., Franke, K., Torrente, I., Schulze, G., Priewisch, B., Ruck-Braun, K., Dokic, J., Klamroth, T., Saalfrank, P., Pascual, J. “Inducing the rotation of a single phenyl ring with tunneling electrons”. J. Phys. Chem. C 111 (2007) 14843.CrossRefGoogle Scholar
  63. 63.
    Foley, E., Kam, A., Lyding, J., Avouris, P. “Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100)”. Phys. Rev. Lett. 80 (1998) 1336.CrossRefGoogle Scholar
  64. 64.
    Becker, R., Higashi, G., Chabal, Y., Becker, A. “Atomic scale conversion of clean Si(111)-H-1x1 to Si(111)-2x1 by electron-stimulated desorption”. Phys. Rev. Lett. 65 (1990) 1917.CrossRefGoogle Scholar
  65. 65.
    Walsh, M. A., Hersam, M. C. “Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon”. Annu. Rev. Phys. Chem. 60 (2009) 193.CrossRefGoogle Scholar
  66. 66.
    Dujardin, G., Rose, F., Tribollet, J., Mayne, A. “Inelastic transport of tunnel and field-emitted electrons through a single atom”. Phys. Rev. B 63 (2001) 081305.CrossRefGoogle Scholar
  67. 67.
    Bartels, L., Meyer, G., Rieder, K., Velic, D., Knoesel, E., Hotzel, A., Wolf, M., Ertl, G. “Dynamics of electron-induced manipulation of individual CO molecules on Cu(III)”. Phys. Rev. Lett. 80 (1998) 2004.CrossRefGoogle Scholar
  68. 68.
    Hla, S., Bartels, L., Meyer, G., Rieder, K. “Inducing all steps of a chemical reaction with the scanning tunneling microscope tip:Towards single molecule engineering”. Phys. Rev. Lett. 85 (2000) 2777.CrossRefGoogle Scholar
  69. 69.
    Maksymovych, P., Sorescu, D. C., Yates, J. T. “Methanethiolate adsorption site on Au(111):A combined STM/DFT study at the single-molecule level”. J. Phys. Chem. B 110 (2006) 21161.CrossRefGoogle Scholar
  70. 70.
    Rao, B., Kwon, K., Liu, A., Bartels, L. “2,5-dichlorothiophenol on Cu(111):Initial adsorption site and scanning tunnel microscope-based abstraction of hydrogen at high intramolecular selectivity”. J. Chem. Phys. 119 (2003) 10879.CrossRefGoogle Scholar
  71. 71.
    McNab, I. R., Polanyi, J. C. “Patterned atomic reaction at surfaces”. Chem. Rev. 106 (2006) 4321.CrossRefGoogle Scholar
  72. 72.
    Wang, Y., Kröger, J., Berndt, R., Hofer, W. A. “Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule”. J. Am. Chem. Soc. 131 (2009) 3639.CrossRefGoogle Scholar
  73. 73.
    Comstock, M., Cho, J., Kirakosian, A., Crommie, M. “Manipulation of azobenzene molecules on Au(111) using scanning tunneling microscopy”. Phys. Rev. B 72 (2005) 153414.CrossRefGoogle Scholar
  74. 74.
    Moran, S., Barney Ellison, G. “Photoelectron spectroscopy of sulfur ions”. J. Phys. Chem. 92 (1988) 1794.CrossRefGoogle Scholar
  75. 75.
    Soukiassian, L., Mayne, A. J., Comtet, G., Hellner, L., Dujardin, G., Gourdon, A. “Selective internal manipulation of a single molecule by scanning tunneling microscopy”. J. Chem. Phys. 122 (2005) 134704.CrossRefGoogle Scholar
  76. 76.
    Qiu, X. H., Nazin, G. V., Ho, W. “Mechanisms of reversible conformational transitions in a single molecule”. Phys. Rev. Lett. 93 (2004) 196806.CrossRefGoogle Scholar
  77. 77.
    Rezaei, M., Stipe, B., Ho, W. “Atomically resolved adsorption and scanning tunneling microscope induced desorption on a semiconductor:NO on Si(111)-(7X7)”. J. Chem. Phys. 110 (1999) 4891.CrossRefGoogle Scholar
  78. 78.
    Rao, B. V., Kwon, K., Liu, A., Bartels, L. “Measurement of a linear free energy relationship one molecule at a time”. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 17920.CrossRefGoogle Scholar
  79. 79.
    Hammett, L. P. “The effect of structure upon the reactions of organic compounds. Benzene derivatives”. J. Am. Chem. Soc. 59 (1937) 96.CrossRefGoogle Scholar
  80. 80.
    Anslyn, E. V., Dougherty, D. A. Modern Physical Organic Chemistry. University Science Books. Sausalito, CA; 2005.Google Scholar
  81. 81.
    Tikhodeev, S. G., Ueba, H. “How vibrationally assisted tunneling with STM affects the motions and reactions of single adsorbates”. Phys. Rev. Lett. 102 (2009) 246101.CrossRefGoogle Scholar
  82. 82.
    Kumagai, T., Kaizu, M., Hatta, S., Okuyama, H., Aruga, T. “Direct observation of hydrogen-bond exchange within a single water dimer”. Phys. Rev. Lett. 100 (2008) 166101.CrossRefGoogle Scholar
  83. 83.
    Wong, K. L., Kwon, K., Bartels, L. “Surface dynamics of benzenethiol molecules on Cu(111)”. Appl. Phys. Lett. 88 (2006) 183106.CrossRefGoogle Scholar
  84. 84.
    Maksymovych, P., Sorescu, D. C., Dougherty, D., Yates, J. T. “Surface bonding and dynamical behavior of the CH3SH molecule on Au(111)”. J. Phys. Chem. B 109 (2005) 22463.CrossRefGoogle Scholar
  85. 85.
    Baber, A. E., Tierney, H. L., Sykes, E. C. “A quantitative single-molecule study of thioether molecular rotors”. ACS Nano 2 (2008) 2385.CrossRefGoogle Scholar
  86. 86.
    Tikhodeev, S., Ueba, H. “Theory of inelastic tunneling and its relation to vibrational excitation in ladder climbing processes of single adsorbates”. Surf. Sci. 587 (2005) 25.CrossRefGoogle Scholar
  87. 87.
    Ohara, M., Kim, Y., Yanagisawa, S., Morikawa, Y., Kawai, M. “Role of molecular orbitals near the Fermi level in the excitation of vibrational modes of a single molecule at a scanning tunneling microscope junction”. Phys. Rev. Lett. 100 (2008) 136104.CrossRefGoogle Scholar
  88. 88.
    Ueba, H., Mii, T., Lorente, N., Persson, B.N. “Adsorbate motions induced by inelastic-tunneling current:Theoretical scenarios of two-electron processes”. J. Chem. Phys. 123 (2005) 084707.CrossRefGoogle Scholar
  89. 89.
    Persson, B., Ueba, H. “Theory of inelastic tunneling induced motion of adsorbates on metal surfaces”. Surf. Sci. 502 (2002) 18.CrossRefGoogle Scholar
  90. 90.
    MacLeod, J. M., Lipton-Duffin, J., Fu, C. Y., Rosei, F. “Inducing nonlocal reactions with a local probe”. ACS Nano 3 (2009) 3347.CrossRefGoogle Scholar
  91. 91.
    Nakamura, Y. “Hopping motion of chlorine atoms on Si(100)-(2×1) surfaces induced by carrier injection from scanning tunneling microscope tips”. Surf. Sci. 531 (2003) 68.CrossRefGoogle Scholar
  92. 92.
    Nakamura, Y., Mera, Y., Maeda, K. “Nanoscale imaging of electronic surface transport probed by atom movements induced by scanning tunneling microscope current”. Phys. Rev. Lett. 89 (2002) 266805.CrossRefGoogle Scholar
  93. 93.
    Nouchi, R., Masunari, K., Ohta, T., Kubozono, Y., Iwasa, Y. “Ring of C60 polymers formed by electron or hole injection from a scanning tunneling microscope tip”. Phys. Rev. Lett. 97 (2006) 196101.CrossRefGoogle Scholar
  94. 94.
    Nakamura, Y., Kagawa, F., Kasai, K., Mera, Y., Maeda, K. “Nonthermal decomposition of C60 polymers induced by tunneling electron injection”. Appl. Phys. Lett. 85 (2004) 5242.CrossRefGoogle Scholar
  95. 95.
    Goldman, J., Prybyla, J. “Ultrafast dynamics of laser-excited electron distributions in silicon”. Phys. Rev. Lett. 72 (1994) 1364.CrossRefGoogle Scholar
  96. 96.
    Bauer, M., Aeschlimann, M. “Dynamics of excited electrons in metals, thin films and nanostructures”. J. Electron. Spectros. Relat. Phenomena 12 (2002) 225.CrossRefGoogle Scholar
  97. 97.
    Burgi, L., Jeandupeux, O., Brune, H., Kern, K. “Probing hot-electron dynamics at surfaces with a cold scanning tunneling microscope”. Phys. Rev. Lett. 82 (1999) 4516.CrossRefGoogle Scholar
  98. 98.
    Woodruff, D., Royer, W., Smith, N. “Empty surface-states, image states, and band edge on Au(111)”. Phys. Rev. B 34 (1986) 764.CrossRefGoogle Scholar
  99. 99.
    Goldmann, A., Dose, V., Borstel, G. “Empty electronic states at the (100), (110), and (111) surfaces of nickel, copper, and silver”. Phys. Rev. B 32 (1985) 1971.CrossRefGoogle Scholar
  100. 100.
    Stipe, B., Rezaei, M., Ho, W. “Atomistic studies of O2 dissociation on Pt(111) induced by photons, electrons, and by heating”. J. Chem. Phys. 107 (1997) 6443.CrossRefGoogle Scholar
  101. 101.
    Himpsel, F., Ortega, J. “Electronic-structure of Cu(100), Ag(100), Au(100), and Cu3Au(100) from inverse photoemission”. Phys. Rev. B 46 (1992) 9719.CrossRefGoogle Scholar
  102. 102.
    Maksymovych, P., Dougherty, D. B., Zhu, X., Yates, J. T. “Nonlocal dissociative chemistry of adsorbed molecules induced by localized electron injection into metal surfaces”. Phys. Rev. Lett. 99 (2007) 016101.CrossRefGoogle Scholar
  103. 103.
    Burgi, L., Jeandupeux, O., Brune, H., Kern, K. “Probing hot-electron dynamics at surfaces with a cold scanning tunneling microscope”. Phys. Rev. Lett. 82 (1999) 4516.CrossRefGoogle Scholar
  104. 104.
    Polanyi, J., Zewail, A. “Direct observation of the transition-state”. Acc. Chem. Res. 28 (1995) 119.CrossRefGoogle Scholar
  105. 105.
    Tripa, C., Yates, J. T., Jr. “Surface-aligned reaction of photogenerated oxygen atoms with carbon monoxide targets”. Nature 398 (1999) 6728.Google Scholar
  106. 106.
    Borisov, A., Gauyacq, J., Kazansky, A., Chulkov, E., Silkin, V., Echenique, P. M. “Long-lived excited states at surfaces:Cs/Cu(111) and Cs/Cu(100) Systems”. Phys. Rev. Lett. 86 (2001) 488.CrossRefGoogle Scholar
  107. 107.
    Ohara, M., Kim, Y., Kawai, M. “Electric field response of a vibrationally excited molecule in an STM junction”. Phys. Rev. B 78 (2008) 201405.CrossRefGoogle Scholar
  108. 108.
    Okawa Y, Aono M. “Materials science – nanoscale control of chain polymerization”. Nature 409 (2001) 683.CrossRefGoogle Scholar
  109. 109.
    Takami, K., Mizuno, J., Akai-Kasaya, M., Saito, A., Aono, M., Kuwahara, Y. “Conductivity measurement of polydiacetylene thin films by double-tip scanning tunneling microscopy”. J. Phys. Chem. B 108 (2004) 16353.CrossRefGoogle Scholar
  110. 110.
    Akai-Kasaya, M., Shimizu, K., Watanabe, Y., Saito, A., Aono, M., Kuwahara, Y. “Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite”. Phys. Rev. Lett. 91 (2003) 255501.CrossRefGoogle Scholar
  111. 111.
    Polydiacetylenes. New York:Springer, 1984.Google Scholar
  112. 112.
    Wallace, P. “The band theory of graphite”. Phys. Rev. 71 (1947) 622.CrossRefGoogle Scholar
  113. 113.
    Carlson, D., Knight, A. “Reactions of thyil radicals. XI. Further investigations of thiol-disulfide photolyses in the liquid phase”. Can. J. Chem. 51 (1973) 1410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations