Skip to main content

The Sporophytes of Seed-Free Vascular Plants – Major Vegetative Developmental Features and Molecular Genetic Pathways

  • Chapter
  • First Online:

Abstract

Seed-free vascular plants, collectively referred to as pteridophytes, include several distinct lineages, of which some have living representatives: the lycopsids, sphenopsids, ferns, and psilotopsids. Although the last three are included in a monophyletic group (the moniliformopses) by some workers, the most comprehensive phylogenies that include both extant and extinct taxa reject the monophyly of moniliformopses. The sporophytes of the main living groups of seed-free plants exhibit significantly divergent morphologies, both among the different groups, and between those and the seed plants. In terms of vegetative features, such differences are seen in embryo structure and development, body plan, stele architecture, branching, leaf development and phyllotaxis, and rooting structures. These divergent morphologies are determined by fundamental differences in development and are thought to reflect independent origins of major developmental features that are supported by the current understanding of plant phylogeny. In this context, it becomes highly enticing to search for shared pathways (process homologies) and homoplasy in the molecular genetic mechanisms that control development. Understanding the gene pathways that control fundamental developmental features in the different lineages will greatly improve the resolution of vascular plant phylogeny. In this chapter, I present a comparative survey of major vegetative features of sporophytes, emphasizing the differences among the various living seed-free lineages and between those and seed plants, and I review the state-of-the-art knowledge of molecular genetic pathways that control the development of seed-free plant sporophytes. Results published to date point, in some cases, to highly conserved pathways, such as the one shared between the control of rhizoid development in bryophytes, and that of root hairs in flowering plants; this broad taxonomic range brackets, phylogenetically, all seed-free plant lineages which are hence hypothesized to share the same pathway. In other cases, such as leaf development, ­different lineages reveal complex mosaics of shared and divergent pathways. However, as molecular genetic studies of seed-free plants are still in their infancy compared to those of seed plants, and especially of angiosperms, most aspects of their vegetative sporophyte development have yet to be characterized from a molecular standpoint.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aso, K., Kato, M., Banks, J. A., and Hasebe, M. 1999. Characterization of Homeodomain-Leucine Zipper genes in the fern Ceratopteris richardii and the evolution of the Homeodomain-Leucine Zipper gene family in vascular plants. Molecular Biology and Evolution 16:544–552.

    CAS  PubMed  Google Scholar 

  • Axtell, M. J., and Bartel, D. P. 2005. Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673.

    Article  CAS  PubMed  Google Scholar 

  • Axtell, M. J., and Bowman, J. L. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13:343–349.

    Article  CAS  PubMed  Google Scholar 

  • Beck, C. B. 1960. The identity of the Archaeopteris and Callixylon. Brittonia 12:351–368.

    Article  Google Scholar 

  • Beck, C. B., Schmid, R., and Rothwell, G. W. 1982. Stelar morphology and the primary vascular system of seed plants. Botanical Review 48:691–815.

    Article  Google Scholar 

  • Bennett, T., and Leyser, O. 2006. Something on the side: axillary meristems and plant development. Plant Molecular Biology 60:843–854.

    Article  CAS  PubMed  Google Scholar 

  • Bharathan, G., Goliber, T. E., Moore, C., Kessler, S., Pham, T., and Sinha, N. R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860.

    Article  CAS  PubMed  Google Scholar 

  • Bierhorst, D.W. 1971. Morphology of vascular plants. New York: Macmillan

    Google Scholar 

  • Bierhorst, D. W. 1977. The systematic position of Psilotum and Tmesipteris. Brittonia 29:3–13.

    Article  Google Scholar 

  • Bilderback, D. E. 1987. Association of mucilage with the ligule of several species of Selaginella. American Journal of Botany 74:1116–1121.

    Article  Google Scholar 

  • Campbell, D. H. 1911. The Eusporangiatae. The comparative morphology of the Ophioglossaceae and Marattiaceae. Washington, DC: Carnegie Institution

    Google Scholar 

  • Cantino, P. D., Doyle, J. A., Graham, S. W., Judd, W. S., Olmstead, R. G., Soltis, D. E., Soltis, P. S., and Donoghue, M. J. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56:822–846.

    Article  Google Scholar 

  • Chase, M. W., and Reveal, J. L. 2009. A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society 161:122–127.

    Article  Google Scholar 

  • Cui, H., Levesque, M. P., Vernoux, T., Jung, J. W., Paquette, A. J., Gallagher, K. L., Wang, J. Y., Blilou, I., Scheres, B., and Benfey, P. N. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425.

    Article  CAS  PubMed  Google Scholar 

  • DeMaggio, A.E. 1982. Experimental embryology of pteridophytes. In Experimental embryology of vascular plants, ed. B.M. Johri, pp. 7–34. Berlin: Springer

    Google Scholar 

  • Di Giacomo, E., Sestili, F., Iannelli, M. A., Testone, G., Mariotti, D., and Frugis, G. 2008. Characterization of KNOX genes in Medicago truncatula. Plant Molecular Biology 67:135–150.

    Article  PubMed  CAS  Google Scholar 

  • Eames, A. J. 1936. Morphology of vascular plants. Lower groups. New York: McGraw-Hill

    Google Scholar 

  • Esau K., 1977. Anatomy of seed plants. 2nd edn. New York: Wiley

    Google Scholar 

  • Floyd, S. K., and Bowman, J. L. 2004. Ancient microRNA target sequences in plants. Nature 428:485–486.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, S. K., and Bowman, J. L. 2006. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Current Biology 16:1911–1917.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, S. K., and Bowman, J. L. 2007. The ancestral developmental tool kit of land plants. International Journal of Plant Sciences 168:1–35.

    Article  CAS  Google Scholar 

  • Floyd, S. K., Zalewski, C. S., and Bowman, J. L. 2006. Evolution of class III Homeodomain-leucine zipper genes in streptophytes. Genetics 173:373–388.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, W. E., Moore, R. C., and Purugganan, M. D. 2004. The evolution of plant development. American Journal of Botany 91:1726–1741.

    Article  Google Scholar 

  • Gifford, E. M., and Foster, A. S. 1989. Morphology and evolution of vascular plants. 3rd edn. New York: Freeman

    Google Scholar 

  • Gola, E. M., Jernstedt, J. A., and Zagorska-Marek, B. 2007. Vascular architecture in shoots of early divergent vascular plants, Lycopodium clavatum and Lycopodium annotinum. New Phytologist 174:774–786.

    Article  PubMed  Google Scholar 

  • Haeckel, E. 1866. Allgemeine Entwicklungsgeschichte der Organismen. Berlin: Reimer

    Google Scholar 

  • Harrison, C. J., Corley, S. B., Moylan, E. C., Alexander, D. L., Scotland, R. W., and Langdale, J. A. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434:509–514.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, C. J., Rezvani, M., and Langdale, J. A. 2007. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134:881–889.

    Article  CAS  PubMed  Google Scholar 

  • Hasebe, M., Wen, C.-K., Kato, M., and Banks, J. A. 1998. Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proceedings of the National Academy of Sciences USA 95(11):6222–6227.

    Article  CAS  PubMed  Google Scholar 

  • Hilton, J., and Bateman, R. M. 2006. Pteridosperms are the backbone of seed-plant phylogeny. Journal of the Torrey Botanical Society 133:119–168.

    Article  Google Scholar 

  • Himi, S., Sano, R., Nishiyama, T., Tanahashi, T., Kato, M., Ueda, K., and Hasebe, M. 2001. Evolution of MADS-box gene induction by FLO/LFY genes. Journal of Molecular Evolution 53:387–393.

    Article  CAS  PubMed  Google Scholar 

  • Imaichi, R. 2008. Meristem organization and organ diversity. In Biology and evolution of ferns and lycophytes, eds. T. A. Ranker and C. H. Haufler, pp. 75–103. Cambridge: Cambridge University Press

    Google Scholar 

  • Jernstedt, J. A., Cutter, E. G., and Lu, P. 1994. Independence of organogenesis and cell patern in developing angle shoots of Selaginella martensii. Annals of Botany 74:343–355.

    Article  Google Scholar 

  • Johnson, G., and Renzaglia, K. 2009. Evaluating the diversity of pteridophyte embryology in the light of recent phylogenetic analyses leads to new inferences on character evolution. Plant Systematics and Evolution 283:149–164.

    Article  Google Scholar 

  • Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., and Donoghue, M. J. 2007. Plant systematics: a phylogenetic approach. 3rd edn. Sunderland: Sinauer Associates

    Google Scholar 

  • Kaplan, D. R. 1977. Morphological status of the shoot systems of Psilotaceae. Brittonia 29:30–53.

    Article  Google Scholar 

  • Kaplan, D. R., and Groff, P. A. 1995. Developmental themes in vascular plants: functional and evolutionary significance. In Experimental and molecular approaches to plant biosystematics, eds. P. C. Hoch and A. D. Stephenson, pp. 111–145. St. Louis: Missouri Botanical Garden

    Google Scholar 

  • Karafit, S. J., Rothwell, G. W., Stockey, R. A., and Nishida, H. 2006. Evidence for sympodial vascular architecture in a filicalean fern rhizome: Dickwhitea allenbyensis gen. et sp. nov. (Athyriaceae). International Journal of Plant Science 167:721–727.

    Article  Google Scholar 

  • Kato, M., and Imaichi, R. 1997. Morphological diversity and evolution of vegetative organs in pteridophytes. in Evolution and diversification of land plants, eds. K. Iwatsuki and P. H. Raven, pp. 27–43. Tokyo: Springer

    Google Scholar 

  • Kato, M., Takahashi, A., and Imaichi, R. 1988. Anatomy of the axillary bud of Helminthostachys zeylanica (Ophioglossaceae) and its systematic implications. Botanical Gazette 149:57–63.

    Article  Google Scholar 

  • Kenrick P., and Crane, P.R. 1997. The origin and early diversification of land plants. A cladistic study. Washington, DC: Smithsonian Institution Press

    Google Scholar 

  • Kofuji, R., and Yamaguchi, K. 1997. Phylogenetic analysis of MADS genes from the fern Ceratopteris richardii. Journal of Phytogeography and Taxonomy 45:83–91.

    Google Scholar 

  • Lu, P., and Jernstedt, J. A. 1996. Rhizophore and root development in Selaginella martensii: meristem transitions and identity. International Journal of Plant Sciences 157:180–194.

    Article  Google Scholar 

  • Menand, B., Yi, K., Jouannic, S., Hoffmann, L., Ryan, E., Linstead, P., Schaefer, D. G., and Dolan, L. 2007. An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480.

    Article  CAS  PubMed  Google Scholar 

  • Munster, T., Pahnke, J., Di Rosa, A., Kim, J. T., Martin, W., Saedler, H., and Theissen, G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences USA 94:2415–2420.

    Article  CAS  PubMed  Google Scholar 

  • Munster, T., Faigl, W., Saedler, H., and Theissen, G. 2002. Evolutionary aspects of MADS-box genes in the eusporangiate fern Ophioglossum. Plant Biology 4:474–483.

    Article  Google Scholar 

  • Ogura, Y. 1972. Comparative anatomy of vegetative organs of the pteridophytes. Berlin: Gebruder Borntraeger

    Google Scholar 

  • Paolillo, D. J. 1963. The developmental anatomy of Isoetes. Urbana: University of Illinois Press

    Google Scholar 

  • Petry, L. C. 1915. Branching in the Ophioglossaceae. Botanical Gazette 59:345–365.

    Article  Google Scholar 

  • Phillips, T. L. 1979. Reproduction of heterosporous arborescent lycopods in the Mississippian-Pennsylvanian of Euramerica. Review of Palaeobotany and Palynology 27:239–289.

    Article  Google Scholar 

  • Prigge, M. J., and Clark, S. E. 2006. Evolution of the class III HD-Zip gene family in land plants. Evolution and Development 8:350–361.

    Article  CAS  Google Scholar 

  • Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, G. W. 1999. Fossils and ferns in the resolution of land plant phylogeny. Botanical Review 65:188–218.

    Article  Google Scholar 

  • Rothwell, G. W., and Erwin, D. M. 1985. The rhizomorph apex of Paurodendron: implications for homologies among the rooting organs of Lycopsida. American Journal of Botany 72:86–98.

    Article  Google Scholar 

  • Rothwell, G. W., and Karrfalt, E. E. 2008. Growth, development, and systematics of ferns: does Botrychium s.l. (Ophioglossales) really produce secondary xylem? American Journal of Botany 95:414–423.

    Article  Google Scholar 

  • Rothwell, G. W., and Nixon, K. C. 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? International Journal of Plant Sciences 167:737–749.

    Article  Google Scholar 

  • Rothwell, G. W., and Stockey, R. A. 1989. Fossil Ophioglossales in the Paleocene of western North America. American Journal of Botany 76:637–644.

    Article  Google Scholar 

  • Rothwell, G. W., Scheckler, S. E., and Gillespie, W. H. 1989. Elkinsia gen. nov., a late Devonian gymnosperm with cupulate ovules. Botanical Gazette 158:170–189.

    Article  Google Scholar 

  • Rothwell, G. W., Sanders, H., Wyatt, S. E., and Lev-Yadun, S. 2008. A fossil record for growth regulation: the role of auxin in wood evolution. Annals of the Missouri Botanical Garden 95:121–134.

    Article  Google Scholar 

  • Rychel, A. L., Peterson, K. M., and Torii, K. U. 2010. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. Journal of Plant Research 123:275–280.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, H., Rothwell, G. W., and Wyatt, S. E. 2009. Key morphological alterations in the evolution of leaves. International Journal of Plant Sciences 170:860–868.

    Article  Google Scholar 

  • Sano, R., Juarez, C. M., Hass, B., Sakakibara, K., Ito, M., Banks, J. A., and Hasebe, M. 2005. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evolution and Development 7:69–78.

    Article  CAS  Google Scholar 

  • Schneider, H., Smith, A. R., and Pryer, K. M. 2009. Is morphology really at odds with molecules in estimating fern phylogeny? Systematic Botany 34:455–475.

    Article  Google Scholar 

  • Stanich, N. A., Rothwell, G. W., and Stockey, R. A. 2009. Phylogenetic diversification of Equisetum (Equisetales) as inferred from Lower Cretaceous species of British Columbia, Canada. American Journal of Botany 96:1–12.

    Article  Google Scholar 

  • Steeves, T. A., and Sussex, I. M. 1989. Patterns in plant development. 2nd edn. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Stewart, B. L., and Tomescu, A. M. F. 2009. Phylogenetic patterns of endodermis development across vascular plant lineages. Botanical Society of America annual meeting abstracts. http://2009.botanyconference.org/engine/search/index.php?func=detail&aid=441

    Google Scholar 

  • Stewart, W. N., and Rothwell, G.W. 1993. Paleobotany and the evolution of plants. 2nd edn. Cambridge: Cambridge University Press

    Google Scholar 

  • Stubblefield, S. P., and Rothwell G. W. 1981. Embryogeny and reproductive biology of Bothrodendrostrobus mundus (Lycopsida). American Journal of Botany 68:625–634.

    Article  Google Scholar 

  • Stutzel, T., and Jaedicke, A. 2000. Verzweigung bei Schachtelhalmen. Feddes Repertorium 111:15–22.

    Article  Google Scholar 

  • Svensson, M. E., and Engstrom, P. 2002. Closely related MADS-box genes in club moss (Lycopodium) show broad expression patterns and are structurally similar to, but phylogenetically distinct from, typical seed plant MADS-box genes. New Phytologist 154:439–450.

    Article  CAS  Google Scholar 

  • Svensson, M. E., Johannesson, H., and Engstrom, P. 2000. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene 253:31–43.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe, Y., Uchida, M., Hasebe, M., and Ito, M. 2003. Characterization of the Selaginella ­remotifolia MADS-box gene. Journal of Plant Research 116:69–73.

    Google Scholar 

  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Munster, T., Winter, K.-U., and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42:115–149.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. M. 1920. New stelar facts, and their bearing on the stelar theories for the ferns. Transactions of the Royal Society of Edinburgh 52:715–735.

    Google Scholar 

  • Tomescu, A. M. F. 2008. The endodermis: a horsetail’s tale. New Phytologist 177:291–295.

    PubMed  Google Scholar 

  • Tomescu, A. M. F. 2009. Megaphylls, microphylls and the evolution of leaf development. Trends in Plant Science 14:5–12.

    Article  CAS  PubMed  Google Scholar 

  • Tomescu, A. M. F., Rothwell, G. W., and Trivett M. L. 2008. Reiterative growth in the complex adaptive architecture of the Paleozoic (Pennsylvanian) filicalean fern Kaplanopteris clavata. Plant Systematics and Evolution 270:209–216.

    Article  Google Scholar 

  • Troop, J. E., and Mickel, J. T. 1968. Petiolar shoots in the dennstaedtioid and related ferns. American Fern Journal 58:64–70.

    Google Scholar 

  • von Guttenberg, H. 1966. Histogenese der Pteridophyten. Berlin: Gebruder Borntraeger

    Google Scholar 

  • Wardlaw, C. W. 1944. Experimental and analytical studies of pteridophytes. IV. Stelar morphology: experimental observations on the relation between leaf development and stelar morphology in species of Dryopteris and Onoclea. Annals of Botany 8:387–399.

    Google Scholar 

  • Wardlaw, C. W. 1946. Experimental and analytical studies of pteridophytes. VII. Stelar morphology: the effect of defoliation on the stele of Osmunda and Todea. Annals of Botany 9:97–107.

    Google Scholar 

  • Wardlaw, C. W. 1955. Embryogenesis in plants. London: Methuen

    Google Scholar 

  • White, R. A. 1984. Comparative development of vascular tissue patterns in the shoot apex of ferns. In Contemporary problems in plant anatomy, eds. R. A. White and W. C. Dickison, pp. 53–107. Orlando: Academic Press

    Google Scholar 

  • White, R. A., and Weidlich, W. H. 1995. Organization of the vascular system in the stems of Diplazium and Blechnum (Filicales). American Journal of Botany 82:982–991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru M. F. Tomescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tomescu, A.M.F. (2011). The Sporophytes of Seed-Free Vascular Plants – Major Vegetative Developmental Features and Molecular Genetic Pathways. In: Kumar, A., Fernández, H., Revilla, M. (eds) Working with Ferns. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7162-3_6

Download citation

Publish with us

Policies and ethics