Gibberellic Acid and Ethylene Control Male Sex Determination and Development of Anemia phyllitidis Gametophytes



Development and male sex determination in homosporous fern ­gametophytes is controlled by antheridiogens, gibberellin derivatives, which are secreted by hermaphrodites or female and promote the development of males from sexually undetermined gametophytes. In Anemia phyllitidis, antheridiogenesis is a complex process and can be prematurely induced by gibberellic acid (GA3) which imitates the action of antheridic acid, the main antheridiogen of that fern. GA3 in young gametophytes induces many specific cytomorphological and metabolical features during “induction” and “expression” phases of male sex determination which allowed to describe the useful “three-zonal” model. Influence of GA3 on dispersion of nuclear chromatin, induction of cell division cycle, sugar metabolism, and cell wall structural reorganization leads to transverse cell growth and asymmetrical division of antheridial mother cells and to antheridia formation. These processes are modulated by ethylene playing the role of a secondary messenger. Disorganization of communication between cells in gametophytes can cause death of individual cells as well as whole gametophytes.


Cellulose Microfibril Sexual Type Transverse Expansion Fern Gametophyte Gametophyte Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank M. Fronczak for the help in preparing this manuscript in English.


  1. Bleecker, A. B., and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Ann. Rev. Cell Dev. 16:1–18.CrossRefGoogle Scholar
  2. Calvo, A. P., Nicolas, C., Lorenzo, O., Nicolas, G., and Rodríguez, G. 2004. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Regul. 23:44–53.CrossRefGoogle Scholar
  3. Chiou, W. L., and Farrar, R. 1997. Antheridiogen production and response in Polypodiaceae species. Am. J. Bot. 84:633–640.CrossRefGoogle Scholar
  4. Collett, C. E., Harberd, N., and Leyser, O. 2000. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 124:553–561.CrossRefPubMedGoogle Scholar
  5. Cooke, T. J., and Paolillo, D. J. Jr. 1980. The control of the orientation of cell divisions in fern gametophytes. Am. J. Bot. 67:1320–1333.CrossRefGoogle Scholar
  6. Corey, E. J., and Myers, A.G. 1985. Total synthesis of (±)-antheridium-inducing factor (AAn, 2) of the fern Anemia phyllitidis. Clarification of stereochemistry. J. Am. Chem. Soc. 107:5574–5576.CrossRefGoogle Scholar
  7. Corey, E. J., Myers, A.G., Takahashi, N., Yamane, H., and Schraudolf, H. 1986. Constitution of antheridium-inducing factor of Anemia phyllitidis. Tetrahedron Lett. 27:5083–5084.CrossRefGoogle Scholar
  8. Fisher, R. W., and Miller, J. H. 1978. Growth regulation by ethylene in fern gametophytes. V. Ethylene and the early events of spore germination. Am. J. Bot. 65:334–339.CrossRefGoogle Scholar
  9. Fisher, R. W., and Shropshire, W. Jr. 1979. Reversal by light of ethylene-induced inhibition of spore germination in the sensitive fern Onocela sensibilis. Plant Physiol. 63:984–988.CrossRefPubMedGoogle Scholar
  10. Haufler, C. H., and Soltis, D. E. 1986.Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proc. Natl. Acad. Sci. USA 83:4389–4393.CrossRefPubMedGoogle Scholar
  11. Huang, Y. M., Chou, H. M., and Chiou, W. L. 2004. Density affects growth and sexual expression of Osmunda cinnamomea (Osmundaceae: Pteridophyta). Ann. Bot. 94:229–232.CrossRefPubMedGoogle Scholar
  12. Harthill, J. E., Meek, S. E. M., Morrice, N., Peggie, M. W., Borch, J., Wong, B. H. C., and MacKintosh, C. 2006. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47:211–223.CrossRefPubMedGoogle Scholar
  13. Kaneta, T., Kakimoto, T., and Shiboaka, H. 1997. Gibberellin A3 causes a decrease in the accumulation of mRNA for ACC oxidase and in the activity of the enzyme in azuki bean (Vigna angularis) epicotyl. Plant Cell Physiol. 38:1135–1141.PubMedGoogle Scholar
  14. Kaźmierczak, A. 1998. Studies on morphology and metabolism of prothalli during GA3-induced formation of antheridia in Anemia phyllitidis. Acta Physiol. Plant. 20:277–283.CrossRefGoogle Scholar
  15. Kaźmierczak, A. 2003a. Induction of cell division and cell expansion at the beginning of GA3-induced precocious antheridia formation in Anemia phyllitidis gametophytes. Plant Sci. 165:933–939.CrossRefGoogle Scholar
  16. Kaźmierczak, A. 2003b. The ethylene is a positive regulator for GA3-induced male sex in Anemia phyllitidis gametophytes. Plant Cell Rep. 22:295–302.CrossRefPubMedGoogle Scholar
  17. Kaźmierczak, A. 2004. Aminooxyacetic acid inhibits antheridiogenesis and development of Anemia phyllitidis gametophytes. Plant Cell Rep. 23:203–210.CrossRefPubMedGoogle Scholar
  18. Kaźmierczak, A. 2005. Methionine and cobalt ions control of development of fern gametophytes. Acta Physiol. Plant. 27:447–454.CrossRefGoogle Scholar
  19. Kaźmierczak, A. 2006. Role of gibberellic acid and ethylene in controlling the sex determination in gametophytes of the homosporous fern Anemia phyllitidis. In Conservation-related Problems of Pteridophytes in Poland, Botanical Guidebooks 29, eds. H. Piekos-Mirkowa and E. Zentkeler, pp. 119–132. Kraków, Poland: Polish Academy of Science, W. Szafer Institute of Botany.Google Scholar
  20. Kaźmierczak, A. 2007. Ethylene is a modulator of gibberellic acid induced antheridiogenesis in Anemia phyllitidis gametophytes. Biol. Plant 51:683–689.CrossRefGoogle Scholar
  21. Kaźmierczak, A. 2008. Cell number, cell growth, antheridiogenesis, and callose amount is reduced and atrophy induced by deoxyglucose in Anemia phyllitidis gametophytes. Plant Cell Rep. 27:813–821.CrossRefPubMedGoogle Scholar
  22. Kaźmierczak, A. 2010. Endoreplication in Anemia phyllitidis coincides with the development of gametophytes and male sex. Physiol. Plant 138:321–328.CrossRefPubMedGoogle Scholar
  23. Kaźmierczak, A., and Kaźmierczak, J. 2007. The level of 1-aminocyclopropane-1-carboxylic acid is increased in Anemia phyllitidis gametophytes during GA3-induced antheridia formation. Acta Physiol. Plant. 29:211–216.CrossRefGoogle Scholar
  24. Kaźmierczak, A., and Kaźmierczak, J. 2009. Contrasting effects of ethylene perception and synthesis inhibitors on GA3-induced antheridiogenesis and the level of 1-aminocyclopropane-1-carboxylic acid in Anemia phyllitidis gametophytes. Environ. Exp. Botany 66:172–177.CrossRefGoogle Scholar
  25. Kaźmierczak, A., and Maszewski, J. 1997. Inhibition of GA3-induced antheridiogenesis in Anemia phyllitidis by peptidic extracts from male sex organs of Chara. Acta Physiol. Plant 19:269–276.CrossRefGoogle Scholar
  26. Kaźmierczak, A., and Maszewski, J. 1998. Antheridial chromatin condensation factor from male sex organs of Chara tomentosa. Cell Biol. Int. 22:227–236.CrossRefPubMedGoogle Scholar
  27. Lucas, W. J., and Lee, J. Y. 2004. Plasmodesmata as a supracellular control network in plants. Nat. Rev. Mol. Cell. Biol. 5:712–726.CrossRefPubMedGoogle Scholar
  28. Mander, L. N. 2003. Twenty years of gibberellin research. Natl. Prod. Rep. 20:49–69.CrossRefGoogle Scholar
  29. Marshall, W. F. 2002. Order and disorder in the nucleus. Curr. Biol. 12:R185–R192.CrossRefPubMedGoogle Scholar
  30. Martin, C., Bhatt, K., and Baumann, K. 2001. Shaping in plant cells. Curr. Opin. Plant Biol. 4:540–549.CrossRefPubMedGoogle Scholar
  31. Metzger, J. M. 1995. Hormones and reproductive development. In Plant Hormones, ed. P. J. Davis, pp. 617–648. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
  32. Miller, J. H. 1968. Fern gametophytes as experimental material. Bot. Rev. 34:361–440.CrossRefGoogle Scholar
  33. Miller, P. M., Sweet, H., and C., Miller, J. H. 1970. Growth regulation by ethylene in fern gametophytes. I. Effects on protonemal and rhizoidal growth and interaction with auxin. Am. J. Bot. 57:212–217.Google Scholar
  34. Mickel, J. T. 1982. The genus Anemia (Schizaeaceae) in Mexico. Brittonia 34:388–413.CrossRefGoogle Scholar
  35. Nakanishi, K., Endo, M., Näf, U., and Johnson, J. F. 1971. Structure of the antheridium-inducing factor of the fern Anemia phyllitidis. J. Am. Chem. Soc. 93:5579–5581.CrossRefGoogle Scholar
  36. Näf, U., Nakanishi, K., and Endo, M. 1975. On the physiology and chemistry of fern antheridiogens. Bot. Rev. 41:315–359.CrossRefGoogle Scholar
  37. Nick, P. 1999. Signals, motors, morphogenesis – the cytoskeleton in plant development. Plant Biol. 1:169–179.CrossRefGoogle Scholar
  38. Pichersky, E., Soltis, D., and Soltis, P. 1990. Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proc. Natl. Acad. Sci. USA 87:195–199.CrossRefPubMedGoogle Scholar
  39. Raghavan, V. 1989. Control differentiation of sex organs on gametophytes. In Developmental Biology of Fern Gametophytes. Cambridge: Cambridge University Press.Google Scholar
  40. Raghavan, V. 1993. Differential expression of nuclear and plastid genes induced by red light and gibberellic acid during germination of spores of the fern Anemia phyllitidis. Am. J. Bot. 80:385–390.CrossRefGoogle Scholar
  41. Reynolds, W. F., and Wolfe, S. L. 1984. Protamines in plant sperm. Exp. Cell Res.152:443–448.CrossRefPubMedGoogle Scholar
  42. Rijnders, J. G. H. M., Yang, Y. Y., Kamiya, Y., Takahashi, N., Barendse, G. W. M., Bloom, C. W. P. M., and Voesenek L. A. C. J. 1997. Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203:20–25.Google Scholar
  43. Rohwer, F., and Bopp, M. 1984. Ethylene synthesis in moss protonema. J. Plant Physiol. 117:331–338.Google Scholar
  44. Rutter, M. R., and Raghavan, V. 1978. DNA synthesis and cell division during spore germination in Lygodium japonicum. Ann. Bot. 42:957–965.Google Scholar
  45. Schraudolf, H. 1964. Relative activity of the gibberellins in the antheridium induction in Anemia phyllitidis. Nature 201:98–99.CrossRefGoogle Scholar
  46. Schraudolf, H. 1966. Die Wirkung von Phytohormonen auf Keimung und Entwicklung von Farnprothallien II. Analyse der Wechselbeziehung Zwischen Gibberllinkonzentration, Antheridienbildung und physiologischem Alter der Prothalliumzellen in Anemia phyllitidis. Planta (Berl.) 68:335–352.CrossRefGoogle Scholar
  47. Schuettpelz, E., and Pryer, K. M. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050.CrossRefGoogle Scholar
  48. Sugimoto-Shirasu, K., and Roberts, K. 2003. “Big it up”: endoreduplication and cell size control in plants. Curr. Opin. Plant Biol. 6:544–553.CrossRefPubMedGoogle Scholar
  49. Tadeo, F. R., Gómez-Cadenas, A., Ben-Cheikh, W., Primo-Millo, E., and Talón, M. 1997. Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta 202:370–378.CrossRefGoogle Scholar
  50. Tanurdzic, M., and Banks, J. A. 2004. Sex-determining mechanisms in land plants. Plant Cell 16:S61–S71.CrossRefPubMedGoogle Scholar
  51. Tittle, F. L. 1987. Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Physiol. Plant 70:499–502.CrossRefGoogle Scholar
  52. Tilney, T. G., Cooke, T. J., Connelly, P. S., and Tilney, M. S. 1990. The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. Development 110:1209–1221.PubMedGoogle Scholar
  53. Wang, K. L. C., Li, H., and Ecker, J. R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151.PubMedGoogle Scholar
  54. Warne, T. R., and Lloyd, R. M. 1986. Gametophytic density and sex expression in Ceratopteris. Can. J. Bot. 65:362–365.CrossRefGoogle Scholar
  55. Wolniak, S. M, Klink, V. P., Hart, P. E., and Tai, C. W. 2000. Control of development in the ­spermatozoids of lower plants. Grav. Space Biol. Bull. 13:85–93.Google Scholar
  56. Van Der Knaap, E., Kim, J. H., and Kende, H. 2000. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol. 122:695–704.CrossRefPubMedGoogle Scholar
  57. Voesenek, L. A. C. J., Benschop, J. J., Bou, J., Cox, M. C. H., Groeneveld, H. W., Millenaar, F. F., Vreeburg, R. A. M., and Peeters, A. J. M. 2003. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. 91:205–211.CrossRefPubMedGoogle Scholar
  58. Vriezen, W. H., Zhou, Z., and van der Straeten, D. 2003. Regulation of submergence-induced enhancement shoot elongation in Oryza sativa L. Ann. Bot. 91:263–270.CrossRefPubMedGoogle Scholar
  59. Yamane, H. 1998. Ferns antheridiogens. Int. Rev. Cytol. 184:1–31.CrossRefGoogle Scholar
  60. Yamauchi, T., Oyama, N., Yamane, N., Murofushi, N., Schraudolf, H., Pour, M., Furber, M., and Mander, L. N. 1996. Identification of antheridiogens in Lygodium círcinnatum and Lygodium flexuosum. Plant Physiol. 111:741–745.PubMedGoogle Scholar
  61. Yamauchi, T., Oyama, N., Yamane, N., Murofushi, N., Schraudolf, H., Pour, M., Seto, H., and Mander, L. N. 1997. Biosynthesis of GA73 methyl ester in Lygodium ferns. Plant Physiol. 113:773–778.PubMedGoogle Scholar
  62. Yamasaki, S., Fujii, N., and Takahashi, H. 2000. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol. 41:608–616.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of CytophysiologyUniversity of ŁódźŁódźPoland

Personalised recommendations