Sexual Reproduction in Ferns

  • V. Menéndez
  • E. Peredo
  • M. Méndez
  • A. Revilla
  • H. Fernández


This work summarizes the mechanisms involved in sexual reproduction in the gametophyte of pteridophyta, which is selected as experimental system due to its morphological simplicity, and the lack of connections with the mother plant.

A better knowledge about the mechanisms involved in sexual reproduction has important repercussions in the plant world, and could contribute to exploiting ­interesting species in a more rational way.


Female Gametophyte Sexual Organ Staminate Flower Pistillate Flower Dioecious Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ainsworth, C. 2000. Boys and girls come out to play: the Molecular Biology of Dioecious Plants. Ann. Bot. 86:211–221.CrossRefGoogle Scholar
  2. Banks, J.A. 1999. Gametophyte development in ferns. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:163–186.CrossRefPubMedGoogle Scholar
  3. Carpentier, S.C., Witters, E., Laukens, K., Deckers, P., Swennen, R., and Panis, B. 2005. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507.CrossRefPubMedGoogle Scholar
  4. Carpentier, S.C., Coemans, B., Podevin, N., Laukens, K., Witters, E., Matsumura, H., Terauchi, R., Swennen, R., and Panis B. 2008. Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol. Plant. 133:117–30.CrossRefPubMedGoogle Scholar
  5. Chailkyan, M.K., and Khryanin, V.N. 1987. Sexuality in plants and its hormonal regulation. Berlin: Springer-Verlag.Google Scholar
  6. Chen, C.H. 2008. Review of a current role of mass spectrometry for proteome research. Anal. Chim. Acta 624:16–36.CrossRefPubMedGoogle Scholar
  7. Chiou, W.L., Farrar, D.R., and Ranker, T.A. 1998. Gametophyte morphology and reproductive biology in Elaphoglossum Schott. Can. J. Bot. 76:1967–1977.CrossRefGoogle Scholar
  8. Chich, J.F., David, O., Villers, F., Schaeffer, B., et al. 2007. Statistic for proteomics: experimental design and 2-DE differential analysis. J Chromatogr. B, 849:261–272.CrossRefGoogle Scholar
  9. Cousens, M.I. 1979. Gametophytic ontogeny, sex expression and genetic load as measures of population divergence in Blechnum spicant. Am. J. Bot. 66:116–132.CrossRefGoogle Scholar
  10. Dekock, N., Theron, K.I., Swart, P., Weiler, E.W., and Bellstedt, D.U. 1994. Cytokinins in the xylem sap of the dioecious fynbos shrub Leucandendrom rubrum (Burm) F. Seasonal fluctuations and their possible interaction with morphological characteristics as expressed in the 2 sexes. New Phytol. 127:749–759.CrossRefGoogle Scholar
  11. Dellaporta, S.L., and Calderon-Urrea, A. 1994. The sex determination process in maize. Science 266:1501–1505.CrossRefPubMedGoogle Scholar
  12. Döpp, W. 1950. Eine die Antheridienbildung bei farnen fördernde substanz in den prothallien von Pteridium aquilinum (L.) Kuhn. Ver. Deut. Bot. Ges. 63:139–147.Google Scholar
  13. Duran, R., and Duran, B. 1984. Sexual differentiation in higher plants. Physiol. Plant 60:2167–2174.Google Scholar
  14. Duran, R., and Duran, B. 1990. Sexual determination and sexual differentiation. Crit. Rev. Plant Sci. 9:295–316.CrossRefGoogle Scholar
  15. Fernández, H., Bertrand, M.A., and Sánchez-Tamés, R. 1996. Influence of culture conditions on apogamy in Dryopteris affinis sp. affinis. Plant Cell Tissue and Organ Cult. 45:93–97.CrossRefGoogle Scholar
  16. Fernández, H., Bertrand, A.M., and Sánchez-Tamés, R. 1997. Gametophyte culture and antheridiogen activity in Blechnum spicant L. Plant Cell Tissue Organ Cult. 50:71–74.CrossRefGoogle Scholar
  17. Fernández, H, Bertrand, A.M., Sierra, M.I., and Sánchez-Tamés, R. 1999. An apolar GA-like compound responsible for the antheridiogen activity in Blechnum spicant. Plant Growth Regul. 28:143–144.CrossRefGoogle Scholar
  18. Fernández, H., and Revilla, M.A 2003 In vitro culture of ornamental ferns. Review of Plant Biotechnology and Applied Genetics. Plant Cell Tissue and Organ Cult. 73:1–13.CrossRefGoogle Scholar
  19. Goldberg, R.B., Beals, T., and Saunders, P. 1993. Anther development: basic principles and practical applications. Plant Cell 5:1217–1229.CrossRefPubMedGoogle Scholar
  20. Grant, S., Hunkirchen, B., and Saedler, H. 1994. Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant J. 6:471–480.CrossRefGoogle Scholar
  21. Hamilton, R.G., and Lloyd, R.M. 1991. Antheridiogen in the wild: the development of fern gametophyte communities. Functional Ecol. 5:804–809.CrossRefGoogle Scholar
  22. Hickok, L., Warne, T.R., and Fribourg, R. 1995. The biology of the fern Ceratopteris and its use as a model system. Int. J. Plant Sci. 156:332–345.CrossRefGoogle Scholar
  23. Irish, E.E. 1999. Maize sex determination. In Sex Determination in Plants, ed. C.A. Ainsworth, pp. 183–188. Oxford, UK: Bios Scientific Publishers.Google Scholar
  24. Janoušek, B., Siroky, J., and Vyskot, B. 1996. Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol. Gen. Genet. 250:483–490.CrossRefPubMedGoogle Scholar
  25. Jorrín-Novo, J.V., Maldonado, A.M., Echevarría-Zomeño, S., Valledor, L., Castillejo, M.A., Curto, M., Valero, J., Sghaier, B., Donoso, G., and Redondo, I. 2009. Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J. Proteomics 72:285–314.CrossRefPubMedGoogle Scholar
  26. Klekowski, E.J. Jr. 1969. Reproductive biology of the Pteridophyta. II. Theoretical considerations. J. Linn. Soc. 62:347–359.CrossRefGoogle Scholar
  27. Koitabashi, R. 1996. Sex Determining Factor in Ceratopteris (Ceratopteris richardii). Masters Thesis (Tokyo, Japan: University of Tokyo).Google Scholar
  28. Korpelainen, H. 1998. Labile sex expression in plants. Biol. Rev. 73:157–180.CrossRefGoogle Scholar
  29. Korpelainen, H., and Pietiläinen, M. 2008. Effort to reconstruct past populations history in the fern Blechnum spicant. J. Plant Res. 121:293–298.CrossRefPubMedGoogle Scholar
  30. Khryanin, V.N. 2002. Role of phytohormones in sex differentiation in plants. Russ. J. Plant Physiol. 49:545–551.CrossRefGoogle Scholar
  31. Label-Hardenack, S., and Grant, S.R. 1997. Genetics of sex determination in flowering plants. Trends Plant Sci. 2:130–136.CrossRefGoogle Scholar
  32. Li, J.W., and Haufler, H. 1999. Genetic variation, breeding systems, and patterns of diversification in Hawaiian Polypodium (Polypodoiaceae). Syst. Bot. 24:339–355.CrossRefGoogle Scholar
  33. Lorbeer, G. 1934. Die Zytologie der Lebermoose mit besonderer Berucksichtingung allgemeiner Chromosomenfragen. Jahrb. Wiss. Bot. 80:567–817.Google Scholar
  34. Mathesius, U., Keijzers, G., Natera, S.H.A., and Weinman, J.J., et al. 2001. Establishment of root proteome reference map for the model legume Medicago trunculata using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440.CrossRefPubMedGoogle Scholar
  35. Menéndez, V., Revilla, M.A., Bernard, P., Gotor, V., and Fernández, H. 2006a. Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Rep. 25:1104–1110.CrossRefPubMedGoogle Scholar
  36. Menéndez, V., Revilla, M.A., and Fernández, H. 2006b. Growth and gender in the gametophyte of Blechnum spicant L. Plant Cell Tissue Organ Cult. 86:47–53.CrossRefGoogle Scholar
  37. Menéndez, V., Villacorta, N.F., Revilla, M.A., Bernard, P., and Fernández, H. 2006c. Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkis ssp affinis. Plant Cell Rep. 25:85–91.CrossRefPubMedGoogle Scholar
  38. Menéndez, V., Revilla, M.A., Fal, M.A., and Fernández, H. 2009. The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tissue Organ Cult. 96:245–250.CrossRefGoogle Scholar
  39. Näf, U., Nakanishi, K., and Endo, M. 1975. On the physiology and chemistry of fern antheridiogens. Bot. Rev. 41:315–359.CrossRefGoogle Scholar
  40. Phinney, B. 1981. Dwarfing genes in Zea mays and their relation to the gibberellins. In Plant Growth Regulation, ed. R.M. Klein, pp. 489–501. Ames: Iowa State University Press.Google Scholar
  41. Phinney, B., and Spray, C. 1982. Chemical genetics and the gibberellin pathway in Zea mays L. In Plant Growth Regulation, ed. P.F. Wareing, pp. 101–110. New York: Academic Press.Google Scholar
  42. Pineda Rodó, A., Brugier, N., Vankova, R., Malbeck, J., Olson, J.M., Haine, S.C., Martin, R.C., Habben, J.E., Mok, D.W., and Mok, M.C. 2008. Over-expression of a zeatin O-glucosilation gene in maize leads to growth retardation and tassel seed formation. J. Exp. Bot. 59:2673–2886.CrossRefPubMedGoogle Scholar
  43. Pryer, K.M., Scheneider, H., Zimmer, E.A., and Banks, J.A. 2002. Deciding among green plants for whole genome studies. Trends Plant Sci. 7:550–554.CrossRefPubMedGoogle Scholar
  44. Rose, J.K., Bashir, S., Giovannoni, J.J., Jahn, M.M., and Saravanan, R.S. 2004. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J. 39:715–733.CrossRefPubMedGoogle Scholar
  45. Schneller, J.J., Haufler, C.H., and Ranker, T.A. 1990. Antheridiogen and natural gametophyte populations. Am. Fern J. 80:143–152.CrossRefGoogle Scholar
  46. Soltis, P.S., and Soltis, D.E. 1990a. Evolution of inbreeding and outcrossing in ferns and fern-allies. Pl. Sp. Biol. 5:1–11.CrossRefGoogle Scholar
  47. Soltis, P.S., and Soltis, D.E. 1990b. Genetic variation within and among populations of ferns. Am. Fern J. 80:161–172.CrossRefGoogle Scholar
  48. Spielman, M., Vinkenoog, R., Dickinson, H.G., and Scott, R.J. 2001. The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 17:705–711.CrossRefPubMedGoogle Scholar
  49. Stevens, R.D., and Werth, C.R. 1999. Interpopulational comparison of dose-mediated antheridiogen response in Onoclea sensibilis. Am. Fern J. 89:221–231.CrossRefGoogle Scholar
  50. Takeno, K., and Furuya, M. 1987. Sporophyte formation in experimentally-induced unisexual female and bisexual gametophytes of Lygodium japonicum. Bot. Mag. Tokyo 100:37–41.CrossRefGoogle Scholar
  51. Takeno, K., Yamane, H., Yamauchi, T., Takahashi, N., Furber, M., and Mander, L. 1989. Biological activities of the methyl ester of gibberellin A 73, a novel and principal antheridiogen in Lygodium japonicum. Plant Cell Physiol. 30:201–215.Google Scholar
  52. Tanurdzic, M., and Banks, J.A. 2004. Sex-determining mechanisms in land plants. Plant Cell 16:S61–S71.CrossRefPubMedGoogle Scholar
  53. Voeller, B. R. 1964. Antheridogens in ferns. Regulateurs naturels de la croissance vegetale. In Colloques Inter- nationaux du Centre National de la Recherche Scienti- fique. (Paris, 1964), No. 123:665–684.Google Scholar
  54. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.CrossRefPubMedGoogle Scholar
  55. Vyskot, B., Araya, A., Veuskens, J., Negrutiu, I., and Mouras, A. 1993. DNA methylation of sex chromosomes in a dioecious plant Melandrium album. Mol. Gen. Genet. 239:219–224.PubMedGoogle Scholar
  56. Vyskot, B. 1999. The role of DNA methylation in plant reproductive development. In Sex Determination in Plants, ed. C.C. Ainsworth, pp. 101–120. Oxford: Bios.Google Scholar
  57. Wilson, M.F. 1981. Sex expression in ferns gametophytes: some evolutionary possibilities. J. Theor. Biol. 93:403–409.CrossRefGoogle Scholar
  58. Wynne, G., Mander, L., Goto, N., Yamane, H., and Omori, T. 1998. Biosynthetic origin of the antheridiogen, gibberellin A(73) methyl ester, in ferns of the Lygodium genus. Tetrahedron Lett. 39:3877–3880.CrossRefGoogle Scholar
  59. Yamane, H. 1998. Ferns antheridiogens. Int. Rev. Cytol. 184:1–31.CrossRefGoogle Scholar
  60. Yamauchi, T., Oyama, N., Yamane, H., Murofushi, N., Takahashi, N, Schraudolf, H., Furber, M., Mander, L.N, Patrick, G.L., and Twitchin, B. 1991. Biosynthesis of antheridic acid, the principal antheridiogen in Anemia phyllitidis. Phytochemistry 30:3247.CrossRefGoogle Scholar
  61. Yamauchi, T., Oyama, N., Yamane, H., Murofushi, N., Schraudolf, H., Owen, D., and Mander, L.N. 1995. 3-Epi-GA63 antheridiogen in Anemia phyllitidis. Phytochemistry 38:1345–1348.CrossRefGoogle Scholar
  62. Yamauchi, T., Oyama, N., Yamane, N., Murofushi, N., Schraudolf, H., Pour, M., Furber, M., and Mander, L.N. 1996. Identification of antheridiogens in Lygodium círcinnatum and Lygodium flexuosum. Plant Physiol. 111:741–745.PubMedGoogle Scholar
  63. Yamauchi, T., Oyama, N., Yamane, H., Murofushi, N., Schraudolf, H., Pour, M., Mander, L.N., and Seto, H. 1997. Biosynthesis of GA73 methyl ester in Lygodium ferns. Plant Physiol. 113:773–778.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. Menéndez
  • E. Peredo
  • M. Méndez
  • A. Revilla
  • H. Fernández
    • 1
  1. 1.Area Plant Physiology, Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoSpain

Personalised recommendations