Advertisement

Laboratory-Induced Apogamy and Apospory in Ceratopteris richardii

  • Angela R. Cordle
  • Linh Thuy Bui
  • Erin E. Irish
  • Chi-Lien Cheng
Chapter

Abstract

All land plants progress through a life cycle that alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte. The lifespan and autotrophy of the two generations have evolved from bryophytes to seed plants in opposite directions: the sporophyte generation became long-lived and autotrophic whereas the gametophyte generation became ephemeral and ­heterotrophic during the land plant evolution. In ferns, seedless vascular plants of the Monilophyte clade, both generations are free living. In addition to the normal life cycle using meiosis to generate spores and sexual union to form zygotes, in nature many fern species can switch from one generation to another asexually. In the asexual pathways, termed apospory and apogamy, a gametophyte is generated from sporophytic cells without meiosis and a sporophyte is generated from gametophytic cells without fertilization, respectively. The model fern Ceratopteris richardii does not reproduce asexually through apospory and apogamy in nature but both pathways can be induced in the laboratory using specific culture conditions. The independence of the two generations in ferns and the ease of switching from one generation to the other through the asexual pathways offer a system suitable for studying how each generation is initiated. This developmental plasticity of crossing­ generation barriers, i.e., meiosis and fertilization, is not unique to ferns and is manifested in the complex pathways leading to apomixis in some seed plants. This review summarizes the establishment of apogamy and apospory induction systems in C. richardii and their possible application in studying the initiation of each generation. The asexual pathways in ferns are compared and contrasted with the current understanding of apomixis in seed plants.

Keywords

Megaspore Mother Cell Fern Species KNOX Gene Restitution Nucleus Spore Mother Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ambrozic-Dolinsek, J., Camloh, M., Bohanec, B., and Zel, J. 2002. Apospory in leaf culture of staghorn fern (Platycerium bifurcatum). Plant Cell Rep. 20:791–796.CrossRefGoogle Scholar
  2. Banks, J. A. 1994. Sex-determining genes in the homosporous fern Ceratopteris. Development 120:1949–1958.PubMedGoogle Scholar
  3. Banks, J. A. 1997. Sex determination in the fern Ceratopteris. Trends Plant Sci. 2:175–180.CrossRefGoogle Scholar
  4. Banks, J. A. 1999. Gametophyte development in ferns. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:163–186.CrossRefPubMedGoogle Scholar
  5. Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu. Rev. Ecol. Syst. 29:263–292.CrossRefGoogle Scholar
  6. Becker, B. and Marin, B. 2009. Streptophyte algae and the origin of embryophytes. Ann. Bot. 103:999–1004.CrossRefPubMedGoogle Scholar
  7. Bell, P. R. 1992. Apospory and apogamy: implications for understanding the plant life cycle. Int. J. Plant Sci. 153:S123–S136.CrossRefGoogle Scholar
  8. Chatterjee, A. and Roux, S. J. 2000. Ceratopteris richardii: A productive model for revealing secrets of signaling and development. J. Plant Growth Regul. 19:284–289.CrossRefPubMedGoogle Scholar
  9. Chaudhury, A. M., Ming, L., Miller, C., Craig, S., Dennis, E. S., and Peacock, W. J. 1997. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94:4223–4228.CrossRefPubMedGoogle Scholar
  10. Cordle, A. R., Irish, E. E., and Cheng, C. L. 2007. Apogamy induction in Ceratopteris richardii. Int. J. Plant Sci. 168:361–369.CrossRefGoogle Scholar
  11. Curtis, M. D. and Grossniklauss, U. 2008. Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod. 21:79–88.CrossRefGoogle Scholar
  12. DeYoung, B., Weber, T., Hass, B., and Banks, J. A. 1997. Generating autotetraploid sporophytes and their use in analysing mutations affecting gametophyte development in the fern Ceratopteris. Genetics 147:809–814.PubMedGoogle Scholar
  13. D’Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., and Mercier, R. 2009. Turning meiosis into mitosis. PLoS Biol. 7:e1000124.CrossRefPubMedGoogle Scholar
  14. Derelle, R., Lopez, P., Le Guyader, H., and Manuel, M. 2007. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol. Dev. 9:212–219.CrossRefPubMedGoogle Scholar
  15. Dolan, L. 2009. Body building on land-morphological evolution of land plants. Curr. Opin. Plant Biol. 12:4–8.CrossRefPubMedGoogle Scholar
  16. Eberle, J. R. and Banks, J. A. 1996. Genetic interactions among sex-determining genes in the fern Ceratopteris richardii. Genetics 142:973–985.PubMedGoogle Scholar
  17. Guitton, A. E. and Berger, F. 2005a. Control of reproduction by Polycomb Group complexes in animals and plants. Int. J. Dev. Biol. 49:707–716.CrossRefPubMedGoogle Scholar
  18. Guitton, A. E. and Berger, F. 2005b. Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr. Biol. 15:750–754.CrossRefPubMedGoogle Scholar
  19. Hake, S., Smith, H. M., Holtan, H., Magnani, E., Mele, G., and Ramirez, J. 2004. The role of knox genes in plant development. Annu. Rev. Cell Dev. Biol. 20:125–151.CrossRefPubMedGoogle Scholar
  20. Hecht, V., Vielle-Calzada, J. P., Hartog, M. V., Schmidt, E. D. L., Boutilier, K., Grossniklauss, U., and De Vries, S. C. 2001. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127:803–816.CrossRefPubMedGoogle Scholar
  21. Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Münster, T., and Theißen, G. 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19:801–814.PubMedGoogle Scholar
  22. Hickok, L. G. 1977. An apomictic mutant for sticky chromosomes in the fern Ceratopteris. Can. J. Bot. 55:2186–2195.CrossRefGoogle Scholar
  23. Hickok, L. G. 1979. Apogamy and somatic restitution in the fern Ceratopteris. Am. J. Bot. 66:1074–1078.CrossRefGoogle Scholar
  24. Hickok, L. G., Warne T. R., and Fribourg, R. S. 1995. The biology of the fern Ceratopteris and its use as a model system. Int. J. Plant Sci. 156:332–345.CrossRefGoogle Scholar
  25. Himi, S., Sano, S., Nishiyama, T., Tanahashi, T., Kato, M., Ueda, K., and Hasebe, M. 2001. Evolution of MADS-Box gene induction by FLO/FLY genes. J. Mol. Evol. 53:387–393.CrossRefPubMedGoogle Scholar
  26. Hirsch, A. M. 1975. The effect of sucrose on the differentiation of excised fern leaf tissue into either gametophyte or sporophytes. Plant Physiol. 56:390–393.CrossRefPubMedGoogle Scholar
  27. Hsieh, T. F., Hakim, O., Ohad, N., and Fischer, R. L. 2003. From flour to flower: How Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci. 8:439–445.CrossRefPubMedGoogle Scholar
  28. Klekowski, E. J. 1979. The genetics and reproductive biology of ferns. In The Experimental Biology of Ferns, ed. A. F. Dyer, pp. 133–165. Academic Press, New York.Google Scholar
  29. Koltunow, A. M. G. and Tucker, M. R. 2008. Functional embryo sac formation in Arabidopsis without meiosis – one step towards asexual seed formation (apomixis) in crops? J. Biosci. 33:309–311.CrossRefPubMedGoogle Scholar
  30. Lang, W. H. 1898. On apogamy and development of sporangia upon fern prothallia. Philos. Trans. R. Soc. Lond. 190:187–238.CrossRefGoogle Scholar
  31. Lee, J. H., Lin, H. W., Joo. S., and Goodenough, U. 2008. Early sexual origins of homeodomain heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829–840.CrossRefPubMedGoogle Scholar
  32. McCourt, R. M., Delwiche, C. F., and Karol, K. G. 2004. Charophyte algae and land plant origins. Trends Ecol. Evol. 19:661–666.CrossRefPubMedGoogle Scholar
  33. Mercier, R., Vezon, D., Bullier, E., Motamayor, J. C., Sellier, A., Lefevre, F., Pelletier, G., and Horlow, C. 2001. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev. 15:1859–1871.CrossRefPubMedGoogle Scholar
  34. Mickel, J. T. 1979. How to know the ferns and fern allies. Iowa: Wm. C. Brown Co. Publ.Google Scholar
  35. Niklas, K. J., and Kutschera, U. 2009. The evolutionary development of plant body plans. Funct. Plant Biol. 36:682–695.CrossRefGoogle Scholar
  36. Niklas, K. J., and Kutschera, U. 2010. The evolution of the land plant life cycle. New Biol. 185:27–41.Google Scholar
  37. Nogler, G. A. 1982. How to obtain diploid apomictic Ranunculus auricomus plants not found in the wild state. Bot. Helv. 92:13–22.Google Scholar
  38. Okano, Y., Aonoa, N., Hiwatashia, Y., Murataa, T., Nishiyamac, T., Ishikawaa, T., Kuboc, M., and Hasebe, M. 2009. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc. Natl. Acad. Sci. USA 106:16321–16326.CrossRefPubMedGoogle Scholar
  39. Ozias-Akins, P. 2006. Developmental characteristics and genetics. Crit. Rev. Plant Sci. 25:199–214.CrossRefGoogle Scholar
  40. Raghavan, V. 1989. Developmental biology of fern gametophytes. pp. 280–294. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Ravi, M., Marimuthu, M. P. A., and Siddiqi, I. 2008. Gamete formation without meiosis; Nature 451:1121–1124.CrossRefPubMedGoogle Scholar
  42. Sano, R., Jua´rez, C. M., Hass, B., Sakakibara, K., Ito, M., Banks, J. A., and Hasebea, M. 2005. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol. Dev. 7:69–78.CrossRefPubMedGoogle Scholar
  43. Sheffield, E. and Bell, P. R. 1981. Experimental studies of apospory in ferns. Ann. Bot. 47:187–195.Google Scholar
  44. Singer, S. D. and Ashton, N. W. 2007. Revelation of ancestral roles of KNOX genes by a functional analysis of Physcomitrella homologues. Plant Cell Rep. 26:2039–2054.CrossRefPubMedGoogle Scholar
  45. Shubin, N., Tabin, C., and Carroll, C. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:818–823.CrossRefPubMedGoogle Scholar
  46. Smith, D. L. 1979. Biochemical and physiological aspects of gametophyte differentiation and development. In The Experimental Biology of Ferns, ed. A. F. Dyer, pp. 355–385. Academic Press, New York.Google Scholar
  47. Sundaresan, V. and Alandete-Saez, M. 2010. Pattern formation in miniature: the female gametophyte of flowering plants. Development 137:179–189.CrossRefPubMedGoogle Scholar
  48. Tanahashi, T., Sumikawa, N., Kato, M., and Hasebe, M. 2005. Diversification of gene function: homologs of the floral regulator FLO⁄LFY control the first zygotic division in the moss Physcomitrella patens. Development 132:1727–1736.CrossRefPubMedGoogle Scholar
  49. Tanabe, Y., Hasebe, M., Sekimoto, H., Nishiyama, T., Kitani, M., Henschel, K., Munster, T., Theißen, G., Nozaki, H., and Ito, M. 2005. Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proc. Natl. Acad. Sci. USA 102:2436–2441.CrossRefPubMedGoogle Scholar
  50. Treisman, J., Harris, E., Wilson, D., and Desplan, C. 1992. The homeodomain- a new face for the helix-turn-helix? Bioessays 13:145–15-.CrossRefGoogle Scholar
  51. Tucker, M. R. and Koltunow, A. H. G. 2009. Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct. Plant Biol. 36:490–504.CrossRefGoogle Scholar
  52. Walker, T. G. 1979. The cytogenetics of ferns. In The Experimental Biology of Ferns, ed. A. F. Dyer, pp. 87–123. Academic Press.Google Scholar
  53. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and Meyerowitz, E. M. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859CrossRefPubMedGoogle Scholar
  54. White, R. A. 1979. Experimental investigations of fern sporophyte development. In The Experimental Biology of Ferns, ed. A. F. Dyer, pp. 505–541. Academic Press, New York.Google Scholar
  55. Whittier, D. P. and Steeves T. A. 1960. The induction of apogamy in the Bracken fern. Can. J. Bot. 38:925–930.CrossRefGoogle Scholar
  56. Whittier, D. P. and Steeves, T. A. 1962. Further studies on induced apogamy in ferns. Can. J. Bot. 40:1525–1531.CrossRefGoogle Scholar
  57. Zhao, H., Lu, M., Singh, R., and Snell, W. J. 2001. Ectopic expression of a Chlamydomonas mt+ -specific homeodomain protein in mtS gametes initiates zygote development without gamete fusion. Genes Dev. 15:2767–2777.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Angela R. Cordle
  • Linh Thuy Bui
  • Erin E. Irish
  • Chi-Lien Cheng
    • 1
  1. 1.Department of BiologyThe University of IowaIowa CityUSA

Personalised recommendations