Studies on Folk Medicinal Fern: An Example of “Gu-Sui-Bu”

  • Hung-Chi Chang
  • Sushim Kumar Gupta
  • Hsin-Sheng Tsay


In the traditional Chinese system of medicine, six different ferns i.e., Drynaria fortunei, Pseudodrynaria coronans, Davallia divaricata, Davallia mariesii, Davallia solida, and Humata griffithiana are used as source of medicine commonly known as “Gu-Sui-Bu.” These have been claimed to cure inflammation, cancer, aging, blood stasis, body ache and bone injuries. However, no scientific investigation has been carried out so far, to evaluate comparative values of these sources. These plants have been over exploited for its fleshy rhizome as a source of “Gu-Sui-Bu” from its natural habitat. Hence it has become a necessity to preserve these species for future generation’s thus in vitro methodology could be the key to preserve these species. The present chapter describes in detail the comparative antioxidative potencies, scavenging activities against DPPH radical, reducing power, and estimation of polyphenol contents in six sources of “Gu-Sui-Bu” and conservation of D. fortune by in vitro methodologies.


Aqueous Extract Ethanol Extract Spore Germination Condensed Tannin Trolox Equivalent Antioxidant Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anonymous, 1999. Zhong Hua Ben Cao (China Herbal) Vol. 2, State Adiministration of Traditional Chinese Medicine, pp. 216–264. Shanghai: Shanghai Science and Technology Press.Google Scholar
  2. Anonymous, 2005. Pharmacopoeia Commission of People Republic of China (ChPC) Vol. 1, pp. 179–180. Beijing: Chemical Industry Press.Google Scholar
  3. Arnous, A., Makris, D.P., and Kefalas, P. 2001. Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 49: 5736–5742.CrossRefPubMedGoogle Scholar
  4. Benerjee, R.D. and Sen, S.P. 1980. Antibiotic activities of pteridophytes. Econ Bot. 34(2): 284–298.CrossRefGoogle Scholar
  5. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200.CrossRefGoogle Scholar
  6. Cai, Y., Luo, Q., Sun, M., and Corke, H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184.CrossRefPubMedGoogle Scholar
  7. Camloh, M. 1993.Spore germination and early gametophyte development of Platycerium bifurcatum. Am Fern J. 83:124–132.CrossRefGoogle Scholar
  8. Carrol, K.K., Kurowska, E.M., and Guthirie, N. 1999. Use of citrus limonoids and flavonoids as well as tocotrienols for the treatment of cancer. Int. patent WO 9916167.Google Scholar
  9. Chang E.J., Lee, W.J., Cho, S.H., and Choi, S.W. 2003. Proliferative effects of flavan-3 and propelargonidina from rhizomes of Drynaria fortunei on MCF-7 and osteblastic cells. Arch Pharm Res. 26:620–630.CrossRefPubMedGoogle Scholar
  10. Chang, H-C., Agrawal, D.C., Kuo, C-L., Wen, J-L., Chen, C-C., and Tsay, H-S. 2007a. In vitro culture of Drynaria fortunei, a fern species source of Chinese medicine “Gu-Sui-Bu.” In Vitro Cell. Deve. Biol Plant 43(2):133–139.CrossRefGoogle Scholar
  11. Chang, H-C., Huang, G.J., Agrawal, D.C., Kuo, C-L., Wu, C-R., and Tsay, H-S. 2007b. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu.” Bot. Stud. 48: 397–406.Google Scholar
  12. Chang, W.C., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H. and Kim, S.K. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 163: 1161–1168.CrossRefGoogle Scholar
  13. Conway, E. 1949. The autecology of bracken [Pteridium aquililinum (L.)Kuhn.]: The germination of spore, and the development of the prothallus and the young sporophyte. Proc. Roy. Soc. Edin. 63B:625–643.Google Scholar
  14. Cui, C.B., Tezuka, Y., Kikuchi, T., Tamaoki, T., and Park, J.H. 1990. Constituents of fern, Davallia mariesii Moore. I. Isolution and structures of Davallialactone and a new flavanone glucuronide. Chem. Pharm. Bull. 38: 3218–3225.PubMedGoogle Scholar
  15. Douglas, G.E. 1994. An investigation into the growth, development and ultra structure of fern gametophytes in existing and novel culture systems. PhD dissertation, University of Manchester, Manchester.Google Scholar
  16. Dixit, R.D. and Vohra, J.N. 1984. A Dictionary of the Pteridophytes of India (Flora of India Series 4), Department of Environment, Government of India, pp. 1–177. Howrah. Botanical Survey of India Publication.Google Scholar
  17. Duh, P.D. 1998. Antioxidant activity of Budrock (Arctium lappa Linn): its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75: 455–461.CrossRefGoogle Scholar
  18. Edwards, M.E. and Miller, J.H., 1972a. Growth regulation by ethylene in fern gametophytes. II. Inhibition of cell division. Am. J. Bot. 59:450–457.CrossRefGoogle Scholar
  19. Edwards, M.E. and Miller, J.H., 1972b. Growth regulation by ethylene in fern gametophytes. III. Inhibition of spore germination. Am J Bot. 59:458–465.CrossRefGoogle Scholar
  20. Edwards, M.E. 1977. Carbon dioxide and ethylene control of spore germination in Onoclea ­sensibilis L. Plant Physiol. 59:756–758.CrossRefPubMedGoogle Scholar
  21. Frankel, E., Kanner, J., German, J., Parks, E., and Kinsella, J.E. 1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wines. Lancet 34: 454–457.CrossRefGoogle Scholar
  22. Giasson, B. I., Ischiropoulos, H., Lee, V. M. Y., and Trojanowski, J. Q. (2002) The relationship between oxidative/nitrosative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic. Biol. Med. 32:1264–1275.CrossRefPubMedGoogle Scholar
  23. Gordon, M.F. 1990. The mechanism of antioxidant action in vitro. In: Hudson, B.J.F. (ed.), Food Antioxidants. pp. 1–18. London. Elsevier Applied Science.Google Scholar
  24. Halliwell, B. and Gutteridge, J.M.C. 1990. Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186: 1–85.CrossRefPubMedGoogle Scholar
  25. Hevly, R.H. 1963. Adaptations of Cheilanthoid ferns to desert environments. J Ariz. Acad. Sci. 2:164–175.CrossRefGoogle Scholar
  26. Hwang, T.H., Kashiwada, Y., Nonaka, G.I., and Nishioka, I. 1989. Flavan-3-ol and proanthocyanidin allosides from Davallia divaricata. Phytochemistry 28: 891–896.CrossRefGoogle Scholar
  27. Ito, M. 1970. Light-induced synchrony of cell division in the protonema of fern, Pteris vittata. Planta 90:22–31.CrossRefGoogle Scholar
  28. Jayaprakasha, G.K., Singh, R.P., and Sakariah, K.K. 2002. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73: 285–290.CrossRefGoogle Scholar
  29. Jeong, J. C., Lee, J.W., Yoon, C.H., Lee, Y.C., Chung, K.H., Kim, M.G., and Kim, C.H. 2005. Stimulative effects of Drynariae rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 cells. J. Ethnopharmacol. 96: 489–95.CrossRefPubMedGoogle Scholar
  30. Julkunen-Titto, R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J. Agric. Food Chem. 33: 213–217.CrossRefGoogle Scholar
  31. Kimura, K. and Noro, Y. 1965. Pharmacognostical studies on Chinese drug “Gu-sui-bu.” I. Consideration on “Gu-sui-bu” in old herbals (Pharmacognostical studies on fern drugs XI). Syoy akugaku Zasshi. 19: 25–31.Google Scholar
  32. Lamaison, J.L.C. and Carnet. A. 1990. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta. Helv. 65: 315–320.Google Scholar
  33. Lee, S., Suh, S., and Kim, S. 2000. Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci. Lett. 287: 191–194.CrossRefPubMedGoogle Scholar
  34. Li, Y.-G., Tanner, G., and Larkin, P. 1996. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70: 89–101.CrossRefGoogle Scholar
  35. Ma, K.C., Zhu, T.Y., and Wang, F.X. 1996. Stimulatory effects of gu-sui-bu (Drynaria baronii) injection on chick embryo bone primordium calcification in vitro. Am. J. Chin. Med. 24: 77–82.CrossRefPubMedGoogle Scholar
  36. Maeda-Yamamoto, M., Kawahara, H., Tahara, N., Tsuji, K., Hara, Y., and Isemura, M. 1999. Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J. Agric. Food Chem. 47: 2350–2354.CrossRefPubMedGoogle Scholar
  37. Miller, N.J and Rice-Evans, C.A. 1997. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radic. Res. 26: 195–199.CrossRefPubMedGoogle Scholar
  38. Mohr, H. 1956. Die Abhangigkeit des Protonemawachstums und der Protonemapolaritat bei Farnen vom Licht. Planta. 47:127–158.CrossRefGoogle Scholar
  39. Murashige. T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 15:473–497.CrossRefGoogle Scholar
  40. Pajaron, S., Pangua, E. and Gracia-Alvarez, L. 1999. Sexual expression and genetic diversity in populations of Cryptogramma crispa (Pteridaceae). Am. J. Bot. 86(7):964–973.Google Scholar
  41. Parshad, R., Sanford, K.K., Price, F.M., Steele, V.E., Tarone, R.E., Kelloff, G.J., and Boone, C.W. 1998. Protective action of plant polyphenols on radiation-induced chromatid breaks in cultured human cells. Anticancer Res. 18: 3263–3266.PubMedGoogle Scholar
  42. Pietta, P.G., Simonetti, P., and Mauri, P. 1998. Antioxidant activity of selected medicinal plants. J. Agric. Food Chem. 46: 4487–4490.CrossRefGoogle Scholar
  43. Porter, L.J., Hrstich, L.N., and Chan. B.G. 1986. The conversion of procyanidins and prodelphonidins to cyanidin and delphinidin. Phytochemistry 25: 223–230.CrossRefGoogle Scholar
  44. Ragazzi, E. and Veronese, G. 1973. Quantitative analysis of phenolics compounds after thin-layer chromatographic separation. J. Chromatogr. 77: 369–375.CrossRefPubMedGoogle Scholar
  45. Raghavan, V. 1989. Developmental biology of fern gametophytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Raghavan, V. 1992.Germination of fern spores. Am. Sci. 80:176–185PubMedGoogle Scholar
  47. Rice-Evans, C.A., Miller, N.J., and Paganga, G.. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159.CrossRefGoogle Scholar
  48. Sheffield, E., Douglas, G.E., Hearne, S.J., Huxham, S., and Wynn, J.M. 2001. Enhancement of fern spore germination and gametophyte growth in artificial media. Am Fern J. 91:179–186.CrossRefGoogle Scholar
  49. Soler-Rivas, C., Espin, J.C., and Wichers, H.J. 2000. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. 11: 330–338.CrossRefGoogle Scholar
  50. Sun, J.S., Theriault, B.L., and Anderson, G..I. 2004. The effect of Gu-Sui-Bu (Drynaria fortunei) on bone cell activity. Am. J. Chin. Med. 32: 737–753.CrossRefPubMedGoogle Scholar
  51. Swami, P and Raghavan, V. Control of morphogenesis in the gametophyte of a fern by light and growth hormones. Can. J. Bot. 1980; 58:1464–1473.Google Scholar
  52. Uddin, M.G., Mirza, M.M., and Pasha, M.K. 1998. The medicinal uses of pteridophytes of Bangladesh. Bangladesh J. Plant Taxon. 5(2): 29–41.Google Scholar
  53. Veglioglu, Y.S., Mazza, G., Gao, L., and Oomah. B.D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113–4117.CrossRefGoogle Scholar
  54. Wayne, R. and Hepler, P.K. 1985. Red light stimulates an increase in intracellular calcium in the spores of Onoclea sensibilis L. Plant Physiol. 77:8–11.CrossRefPubMedGoogle Scholar
  55. Wayne, R. and Hepler, P.K. 1984. The role of calcium ions in phytochrome-mediated germination of spores of Onoclea sensibilis L. Planta. 160:12–20.CrossRefGoogle Scholar
  56. Whittier, D.P. 1999. Spore germination and early gametophyte development in Stromatopteris. Am Fern J. 89(2):142–148.CrossRefGoogle Scholar
  57. Whittier, D.P. 2003. The gametophyte of Diphasiastrum sitchense. Am Fern J. 93(1):20–24.CrossRefGoogle Scholar
  58. Williams, R.L. and Elliot. M.S. 1997. Antioxidants in grapes and wine: chemistry and health effects. In: F. Shaihidi (ed.), Natural Antioxidants: Chemistry, Health Effects and Applications. pp. 150–173. Champaign: AOCS Press.Google Scholar
  59. Wong, R.W. and Rabie, A.B. 2006. Systemic effect of crude extract from rhizome of Drynaria fortunei on bone formation in mice. Phytother. Res. 20(4):313–315.CrossRefPubMedGoogle Scholar
  60. Zhu Y.Z., Huang, S.H., Tan, B.K.H., Sun, J., Whiteman, M., and Zhu. Y.C. 2004. Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat. Prod. Rep. 21: 478–489.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hung-Chi Chang
  • Sushim Kumar Gupta
  • Hsin-Sheng Tsay
    • 1
  1. 1.Institute of Biochemical Sciences and Technology, College of Science and EngineeringChaoyang University of TechnologyWufongTaiwan

Personalised recommendations