Arsenic Hyperaccumulator Fern Pteris vittata: Utilities for Arsenic Phytoremediation and Plant Biotechnology



Arsenic is a toxic metalloid that is widespread in the environment due to both man-made and natural causes. Soils, food, and ground water contaminated with arsenic pose serious health risks to millions of people in different parts of the World. While engineering methods to remediate arsenic-contaminated environments are available, they are often prohibitively expensive and cumbersome. It was discovered about a decade ago that the Chinese brake fern (Pteris vittata) had an extraordinary ability to tolerate and hyperaccumulate arsenic, up to about 2% of dry weight in its fronds. This opened up new opportunities to develop the brake fern for a cost-effective green technology to remediate arsenic-contaminated environments. The objective of this review is to highlight some of the salient findings on this and related ferns regarding their arsenic tolerance and hyperaccumulation traits. Investigations have shown that arsenic hyperaccumulation in brake fern has evolved as a defense against herbivory. Research employing molecular biology tools have identified some of the key genes and proteins important for arsenic metabolism in this species including genes for arsenic-induced oxidative stress. Comparative biochemistry of how organisms adapt to arsenic suggests that many other fern genes related to arsenic transport and metabolism are yet to be characterized in this fern. Our research indicates that brake fern could be a source of genes that could inform us about how plants adapt to abiotic stress factors such as high temperature stress and drought that have oxidative stress as a component. Some of these genes can be expected to be valuable for improving crops for increased tolerance to stress.


Triosephosphate Isomerase Arsenic Poisoning Arsenate Reductase Arsenic Accumulation Toxic Metalloid 



I thank Dr. Lena Q. Ma and Dr. Charles Guy for useful discussions on topics reviewed here. Funding support to author’s research by the United States Department of Agriculture – TSTAR program and the Consortium for Plant Biotechnology Research Inc. is gratefully acknowledged.


  1. Al Agely, A., Sylvia, D.M., and Ma, L.Q. 2005. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern Pteris vittata L. J Environ Qual 34:2181–2186.CrossRefPubMedGoogle Scholar
  2. Ali, W., Isayenkov, S.V., Zhao, F.J., and Maathuis, F.J.M. 2009. Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339.CrossRefPubMedGoogle Scholar
  3. Bleeker, P.M., Shat, H., Vooijs, R., Verkleij, J.A.C., and Ernst, H.O. 2003. Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38.CrossRefGoogle Scholar
  4. Bondada, B.R., Tu, S., and Ma, L.Q. 2004. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Sci Total Environ 332:61–70.CrossRefPubMedGoogle Scholar
  5. Boyd, R.S. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176.CrossRefGoogle Scholar
  6. Dembitsky, V.M. and Rezanka, T. 2003. Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci 165:1177–1192.CrossRefGoogle Scholar
  7. Duan, G., Zhu, Y., Tong, Y., Cai, C., and Kneer, R. 2005. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469.CrossRefPubMedGoogle Scholar
  8. Ellis, D.R., Gumaelius, L., Indriolo, E., Pickering, I.J., Banks, J.A., and Salt, D.E. 2006. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554.CrossRefPubMedGoogle Scholar
  9. Francesconi, K., Visoottiviseth, P., Sridokchan, W., and Goessler, W. 2002. Arsenic species in an arsenic hyperaccumulating fern Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284: 27–35.CrossRefPubMedGoogle Scholar
  10. Gonzaga, M.I.S., Satos, J.A.G., and Ma, L.Q. 2008. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environ Pollut 154:212–218.CrossRefPubMedGoogle Scholar
  11. Gumaelius, L., Lahner, B., Salt, D.E., and Banks, J.A. 2004. Arsenic hyperaccumulation in gametophytes of Pteris vittata: A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:1–11.CrossRefGoogle Scholar
  12. Hanson, B., Lindblom, S.D., Loeffler, M.L., and Pilon-Smits, E.A.H. 2004. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662.CrossRefGoogle Scholar
  13. Hartley-Whitaker, J., Ainsworth, G., and Meharg, A.A. 2001. Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722.CrossRefGoogle Scholar
  14. Huang, A., Teplitski, M., Rathinasabapathi, B., and Ma, L.Q. 2010. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can J Microbiol 56:236–246.CrossRefPubMedGoogle Scholar
  15. Indriolo, E., Na, G., Ellis, D., Salt, D.E., and Banks J.A. 2010. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057.Google Scholar
  16. Kamachi, H., Komori, I., Tamura, H., Sawa, Y., Karahara, I., Honma, Y., Wada, N., Kawabata, T., Matsuda, K., Ikeno, S., Noguchi, M., and Inoue, H. 2005. Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res 118:137–145.CrossRefPubMedGoogle Scholar
  17. Kertulis, G.M., Ma, L.Q., MacDonald, G.E., Chen, R., Chen, R., Winefordner, J.D., and Cai, Y. 2005. Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environ Exp Bot 54: 239–247.CrossRefGoogle Scholar
  18. Lombi, E., Zhao, F. J., Fuhrman, M., Ma, L.Q., and McGrath, S.P. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156: 195–203.CrossRefGoogle Scholar
  19. Ma, L.Q., Komar, K.M., Tu, C., Zhang, W.H., Cai, Y., and Kennelley, E.D. 2001. A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579.CrossRefPubMedGoogle Scholar
  20. Mathews, S., Ma, L.Q., Rathinasabapathi, B., and Stamps, R.H. 2009. Arsenic reduced scale insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ Exp Bot 65: 282–286.CrossRefGoogle Scholar
  21. Meharg, A.A. 2002. Arsenic and old plants. New Phytol 156:1–3.CrossRefGoogle Scholar
  22. Meharg, A.A. 2003. Variation in arsenic accumulation – hyperaccumulation in ferns and their allies. New Phytol 157:25–31.CrossRefGoogle Scholar
  23. Mohan, D. and Pittman, C.U. 2007. Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53.CrossRefPubMedGoogle Scholar
  24. Mukhopadhyay, R. and Rosen, B.P. 2002. Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110: 745–748.PubMedGoogle Scholar
  25. Natarajan, S., Stamps, R.H., Saha, U.K., and Ma, L.Q. 2009. Effects of N and P levels, and frond-harvesting on absorption, translocation and accumulation of arsenic by Chinese brake fern (Pteris vittata L.). Int J Phytoremediation 11:313–328.CrossRefGoogle Scholar
  26. Ng, J.C., Wang, J., and Shraim, A. 2003. A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359.CrossRefPubMedGoogle Scholar
  27. Oremland, R.S. and Stolz, J.F. 2003. The ecology of arsenic. Science 300:939–944.CrossRefPubMedGoogle Scholar
  28. Pickering, I. J., Gumaelius, L., Harris, H. H., Prince, R.C., Hirsch, G., Banks, J.A., Salt, D.E., and George, G.N. 2006. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40: 5010–5014.CrossRefPubMedGoogle Scholar
  29. Poynton, C.Y., Huang, J.W., Blaylock, M.J., Kochian, L.V., and Elles, M.P. 2004. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088.CrossRefPubMedGoogle Scholar
  30. Rathinasabapathi, B. 2006. Ferns represent an untapped biodiversity for improving crops for environmental stress tolerance. New Phytol 172:385–390.CrossRefPubMedGoogle Scholar
  31. Rathinasabapathi, B., Wu, S., Sundaram, S., Rivoal, J., Srivastava, M., and Ma, L.Q. 2006. Arsenic resistance in Pteris vittata L: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857.CrossRefPubMedGoogle Scholar
  32. Rathinasabapathi, B., Rangasamy, M., Froeba, J., Cherry, R.H., McAuslane, H.J., Capinera, J.L., Srivastava, M., and Ma, L.Q. 2007. Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata L.) deters grasshopper (Schistocerca americana (Drury)) herbivore. New Phytol 175:363–369.CrossRefPubMedGoogle Scholar
  33. Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S., and Lupia, R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428:553–557.CrossRefPubMedGoogle Scholar
  34. Sharples, J.M., Meharg, A.A., Chambers, S.M., and Cairney, J.W.G. 2000. Evolution: symbiotic solution to arsenic contamination. Nature 404:951–952.PubMedGoogle Scholar
  35. Singh, N., Ma, L.Q., Srivastava, M., and Rathinasabapathi, B. 2006. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282. CrossRefGoogle Scholar
  36. Soongsombat, P., Kruatrachue, M., Chaiyarat, R., Pokethitiyook, P., and Ngernsansaruay, C. 2009. Lead tolerance and accumulation in Pteris vittata and Pityrogramma calomelanos, and their potential for phytoremediation of lead contaminated soil. Int J Phytoremediation 11:396–412.CrossRefGoogle Scholar
  37. Sridokchan, W., Markich, S., and Visoottiviseth, P. 2005. Arsenic tolerance and accumulation and elemental distribution in twelve ferns: a screening study. Aust J Bot 11: 101–110.Google Scholar
  38. Srivastava, M., Ma, L.Q., and Cotruvo, J.A. 2005a. Uptake and distribution of selenium in different fern species. Int J Phytoremediation 7:33–42.CrossRefPubMedGoogle Scholar
  39. Srivastava, M., Ma, L.Q., Singh, N., and Singh, S. 2005b. Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342.CrossRefPubMedGoogle Scholar
  40. Srivastava, M., Ma, L.Q., Rathinasabapathi, B., and Srivastava, P. 2008. Effect of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 100: 1115–1121.CrossRefPubMedGoogle Scholar
  41. Srivastava, M., Santos, J., Srivastava, P., and Ma, L.Q. 2010. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions. Bioresour Technol 101:2691–2699.CrossRefPubMedGoogle Scholar
  42. Su, Y.H., McGrath, S.P., Zhu, Y.G., and Zhao, F.J. 2008. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441.CrossRefPubMedGoogle Scholar
  43. Sundaram, S., Rathinasabapathi, B., Ma, L.Q., and Rosen, B.P. 2008. An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem 283: 6095–6101.CrossRefPubMedGoogle Scholar
  44. Sundaram, S., Wu, S., Ma, L.Q., and Rathinasabapathi, B. 2009. Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32: 851–858.CrossRefPubMedGoogle Scholar
  45. Sundaram, S. and Rathinasabapathi, B. 2010. Transgenic expression of fern Pteris vittata PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta 231: 361–369.CrossRefPubMedGoogle Scholar
  46. Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., and Berta, G. 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81.CrossRefPubMedGoogle Scholar
  47. Tu, S., Ma, L.Q., MacDonald, G.E., and Bondada, B. 2004. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131.CrossRefGoogle Scholar
  48. Tu, C., and L.Q. Ma. 2003. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil. 249:373–382.Google Scholar
  49. Tu, C. and Ma, L.Q. 2005. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 135:333–340.CrossRefPubMedGoogle Scholar
  50. Wang, J., Zhao, F., Meharg, A.A., Raab, A., Feldmann, J., and McGrath, S.P. 2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561.CrossRefPubMedGoogle Scholar
  51. Wang, X., Ma, L.Q., Rathinasabapathi, B., Liu, Y., and Zeng, G. 2009. Uptake and translocation of arsenite and arsenate by Pteris vittata L: effects of silicon, boron and mercury. Environ Exp Bot 68:222–229.CrossRefGoogle Scholar
  52. Wu, F.Y., Ye, Z.H., Wu, S.C., and Wong, M.H. 2007. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredi Hance. Planta 226:1363–1378.CrossRefPubMedGoogle Scholar
  53. Yang, X., Chen, H., Dai, X.J., Xu, W., He, Z., and Ma, M. 2009. Evidence of vacuolar compartmentalization of arsenic in the hyperaccumulator Pteris vittata. Chin Sci Bull 54:4229–4233.CrossRefGoogle Scholar
  54. Zhao, F.J., Dunham, S.J., and McGrath, S.P. 2002. Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31.CrossRefGoogle Scholar
  55. Zhao, F.J., McGrath, S.P., and Meharg, A.A. 2010. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Plant Molecular and Cellular Biology Program, Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations