Conservation of Fern Spores

  • Daniel Ballesteros


Ferns are a diverse and important group of plants, but diversity of ­species and populations are at risk from increasing social pressures, loss of habitat, and climate change. Ex situ conservation is a useful strategy to limit decline in genetic diversity and requires technologies to preserve fern germplasm. Fern spore storage has received little research attention but, by analogy to seeds, may benefit from the extensive knowledge of seed storage gained during the last 50 years. Fern species produce either nongreen or green spores, which have been considered to exhibit storage physiologies similar to orthodox and recalcitrant seeds, respectively. Consequently, dry storage conditions are conventionally recommended for nongreen spores and humid storage in the refrigerator over media is recommended for medium term storage of green spores and some nongreen spores not tolerant to desiccation. Recently, we have shown that water content of stored ferns can be precisely controlled by adjustments in relative humidity, and that this control can be used to maximize longevity at a range of storage temperatures. Spore longevity is unexpectedly poor when they are stored at temperatures between 0 and 25°C and this has necessitated the use of cryogenic technologies developed over the last 15 years for fern spore storage. Crystallization of triacylglycerols (TAG also known as storage lipids) appears to be associated with fern spore response to low temperature and is analogous to responses reported for seeds of tropical origin. These recent discoveries and perspectives suggest that fern spores exhibit a storage physiology that has been described as intermediate between recalcitrant and orthodox storage behavior or that they exhibit a storage physiology that remains uncharacterized. More research on fern spore storage physiology is needed to contrast and compare various responses of diverse plant germplasm to different storage conditions. The unicellular structure of the fern spore may provide a useful model system to obtain a greater understanding of multicellular germplasm to improve storage techniques lead to more effective conservation.


Fern Species Fern Spore Recalcitrant Seed Storage Behavior Orthodox Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal, D. C., Pawar, S. S., and Mascarenhas, A. F. 1993. Cryopreservation of spores of Cyathea spinulosa Wall. ex. Hook. f. An endangered tree fern. J. Plant Physiol. 142:124–126.Google Scholar
  2. Aragón, C. F. and Pangua, E. 2004. Spore viability under different storage conditions in four rupicolous Asplenium L. taxa. Am. Fern J. 941:28–38.CrossRefGoogle Scholar
  3. Ballesteros, D., Estrelles, E., and Ibars, A. M. 2006. Responses of Pteridophyte spores to ultrafreezing temperatures for long-term conservation in Germplasm Banks. Fern Gazette 17:293–302.Google Scholar
  4. Ballesteros, D. and Walters, C. 2007a. Water properties in fern spores: sorption characteristics relating to water affinity, glassy states and storage stability. J. Exp. Bot. 58:1185–1196.CrossRefPubMedGoogle Scholar
  5. Ballesteros, D. and Walters, C. 2007b. Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures. Cryobiology 55:1–9.CrossRefPubMedGoogle Scholar
  6. Ballesteros, D. 2008. Conservación ex situ de esporas de pteridofitos. In Conservación ex situ de plantas silvestres, eds. G. Bacchetta, Bueno Sanchez, A., Fenu, G., Jimenez-Alfaro, B., Mattana, E., Piotto, B., Virevaire, M., pp. 221–224. Oviedo: Principado de Asturias/La Caixa.Google Scholar
  7. Beri, A. and Bir, S. S. 1993. Germination of stored spores of Pteris vittata L. Am. Fern J. 833:73–78.CrossRefGoogle Scholar
  8. Berjak, P. and Pammenter, N. W. 2008. From Avicennia to Zizania: Seed recalcitrance in perspective. Ann. Bot. 101:213–228.CrossRefPubMedGoogle Scholar
  9. Camloh, M. 1999. Spore age and sterilization affects germination and early gametophyte development of Platycerium bifurcatum. Am. Fern J. 892:124–132.CrossRefGoogle Scholar
  10. Constantino, S., Santamaria, L.M., and Hodson, E. 2000. Storage and in vitro germination of tree fern spores. Bot. Gard. Micropropag. News 24:58–60.Google Scholar
  11. Crane, J., Kovach, D., Gardner, C., and Walters, C. 2006. Triacylglycerol phase and ‘intermediate’ seed storage physiology: a study of Cuphea carthagenensis. Planta 223:1081–1089.CrossRefPubMedGoogle Scholar
  12. Crane, J., Miller, A., Van Roekel, J. W., and Walters, C. 2003. Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699–708.CrossRefPubMedGoogle Scholar
  13. DeMaggio, A. E., Greene, C., and Stetler, D. 1980. Biochemistry of fern spore germination: ­glyoxylate and glycolate cycle activity in Onoclea sensiibilis L. Plant Physiol. 66:922–924.CrossRefPubMedGoogle Scholar
  14. Dyer, A. F. 1979. The experimental biology of ferns. London: Academic.Google Scholar
  15. Dyer, A. F. 1994. Natural soil spore banks - can they be used to retrieve lost ferns? Biodivers Conserv 3:160–175.CrossRefGoogle Scholar
  16. Ellis, R. H., Hong, T. D., and Roberts, E. H. 1990a. An intermediate category of seed behavior? I. Coffee. J. Exp. Bot. 41:1167–1174.CrossRefGoogle Scholar
  17. Ellis, R. H., Hong, T. D., and Roberts, E. H. 1990b. An intermediate category of seed behavior? II. Effects of provenance, immaturity, and imbibition on desiccation-tolerance in coffee. J. Exp. Bot. 42:653–657.CrossRefGoogle Scholar
  18. FAO/IPGRI. 1994. Genebank standards. Rome: Food and Agricultural Organization of the United Nations/International Plant Genetic Resources Institute.Google Scholar
  19. Gemmrich, A. R. 1977. Mobilization of reserve lipids in germinating spores of the fern Anemia phyllitidis L. Plant Sci. Lett. 9:301–307.CrossRefGoogle Scholar
  20. Gemmrich, A. R. 1980. Developmental changes in microbody enzyme activities in germinating spores of the fern Pteris vittata. Z. Pflanzenphysiol. 97:153–160.Google Scholar
  21. Gómez-Campo, C. 2001. La práctica de la conservación de semillas a largo plazo. In: Conservación de especies vegetales amenazadas en la región mediterránea occidental. Una perspectiva desde el fin de siglo, ed. C. Gómez-Campo, pp. 255–266. Madrid. Fundación Ramón Areces.Google Scholar
  22. Gullvag, B. M. 1968. On the fine structure of the spores of Equisetum fluviatile var. verticillatum studied in the quiescent, germinated and non-viable state. Grana Palynol. 8:23–69.CrossRefGoogle Scholar
  23. Gullvag, B. M. 1969. Primary storage products of some pteridophyte spores – A fine structural study. Phytomorphology 19:82–92.Google Scholar
  24. Hauke, R. L. 1969. Gametophyte development in Latin American horsetails. Bull. Torrey Bot. Club 96:568–577.CrossRefGoogle Scholar
  25. Hiyama, T., Imaichi, R., and Kato, M. 1992. Comparative development of gametophytes of Osmunda lancea and O. japonica (Osmundaceae): adaptation of rheophilous fern gametophyte. Bot. Mag., Tokyo 105:215–225.CrossRefGoogle Scholar
  26. Hoekstra, F. A. 2002. Pollen and spores: desiccation tolerance in pollen and the spores of lower plants and fungi. In Desiccation and survival in plants: drying without dying, eds. M. Black, and Prichard H. W., pp. 185 -205. Wallingford, UK: CAB International.CrossRefGoogle Scholar
  27. Ide, J. M., Jermy, A. C., and Paul, A. L. 1992. Fern horticulture: past, present and future perspectives. Andover, UK: Intercept.Google Scholar
  28. Jones, L. E. and Hook, P. W. 1970. Growth and development in microculture of gametophytes from stored spores of Equisetum. Am. J. Bot. 544: 430–435.CrossRefGoogle Scholar
  29. Kato, Y. 1976. The effect of freezing and organic solvents on viability of chlorophyllous fern spores. Cytologia 41:387–393.Google Scholar
  30. Lebkuecher, J. G. 1997. Desiccation-time limits of photosynthetic recovery in Equisetum Hyemale (Equisetaceae) spores. Am. J. Bot. 84:792–797.CrossRefGoogle Scholar
  31. Lindsay, S., Williams, N., and Dyer, A. F. 1992. Wet storage of fern spores: unconventional but far more effective! In Fern horticulture: past, present and future perspectives, eds. J. M. Ide, Jermy, A.C., and Paul, A. M., pp. 285–294. Andover: InterceptGoogle Scholar
  32. Lloyd, R. M. and Klekowski, E. J. Jr. 1970. Spore germination and viability in Pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137.CrossRefGoogle Scholar
  33. Minamikawa, T., Koshiba, T., and Wada, M. 1984. Compositional changes in germinating spores of Adiantum capillus-veneris L. Bot. Mag., Tokyo 97:313–322.CrossRefGoogle Scholar
  34. Morini, S. 2000. In vitro culture of Osmunda regalis fern. J. Hortic. Sci. Biotechnol. 751:31–34.Google Scholar
  35. Page, C. N., Dyer, A. F., Lindsay, S., and Mann, D. G. 1992. Conservation of Pteridophytes—the ex situ approach. In Fern horticulture: past, present and future perspectives, eds. J. M. Ide, Jermy, A. C., and Paul, A. M., pp. 269–278. Andover: Intercept.Google Scholar
  36. Pence, V. C. 2000. Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. Am. Fern J. 904:119–126.CrossRefGoogle Scholar
  37. Pence, V. C. 2004. Ex situ conservation methods for Bryophytes and Pteridophytes. In Ex situ plant conservation: supporting species survival in the wild, eds. E. O. Guerrant, Havens, K., and Maunder, M., pp. 206 – 227. Washington DC: Island Press.Google Scholar
  38. Quintanilla, L. G., Amigo, J., Pangua, E., and Pajaron, S. 2002. Effect of storage method on spore viability in five globally threatened fern species. Ann. Bot. 904:461–467.CrossRefGoogle Scholar
  39. Randi, A. M. and Felippe, G. M. 1988. Mobilization of storage reserves during Cyathea delgadii spore germination. Bot. Mag., Tokyo 101:529–532.CrossRefGoogle Scholar
  40. Rita, J. 1990. Taxonomia. Biogeografia i conservacion de pteridofitos. Palma de Mallorca, Spain: Societat d’Historia Natural de les illes Balears. IME.Google Scholar
  41. Roberts, E. H. and Ellis, R. H. 1989. Water and seed survival. Ann. Bot. 63:39–52.Google Scholar
  42. Roberts, E. H. 1973. Predicting the storage life of seeds. Seed Sci. Technol. 1:499–514.Google Scholar
  43. Robinson, P. M., Smith, D. L., Safford, R., and Nichols, B. W. 1973. Lipid metabolism in the fern Polypodium vulgare. Phytochemistry 12:1377–1381.CrossRefGoogle Scholar
  44. Rogge, G. D., Viana, A. M., and Randi, A. M. 2000. Cryopreservation of spores of Dicksonia sellowiana: An endangered tree fern indigenous to South and Central America. CryoLetters 214:223–230.Google Scholar
  45. Simabukuro, E. A., De Carvalho, M. A. M., and Felippe, G. M. 1998a. Reserve substances and storage of Cyathea delgadii Sternb. spores. Revista Brasileira de Botanica 21:149–152.Google Scholar
  46. Simabukuro, E. A., Dyer, A. F., and Felippe, G. M. 1998b. The effect of sterilization and storage conditions on the viability of the spores of Cyathea delgadii. Am. Fern J. 882:72–80.CrossRefGoogle Scholar
  47. Smith, D. L., and Robinson, P. M. 1975. The effects of spore age on germination and gametophyte development in Polypodium vulgare L. New Phytol. 74:101–108.CrossRefGoogle Scholar
  48. Towill, L. R. and Ikuma, H. 1975. Photocontrol of the germination of Onoclea spores. IV. Metabolic changes during germination. Plant Physiol. 56:468–473.CrossRefPubMedGoogle Scholar
  49. Vertucci, C. W., Berjak, P., Pammenter, N. W., and Crane, J. 1991. Cryopreservation of embryonic axes of an homoiohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. CryoLetters 12:339–350.Google Scholar
  50. Villiers, T. A. 1974. Seed aging: chromosome stability and extended viability of seed stored fully imbibed. Plant Physiol. 53:875–878.CrossRefPubMedGoogle Scholar
  51. Volk, G. M., Crane, J., Caspersen, A. M., Hill, L., Gardner, C., and Walters, C. 2006. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415–1426.CrossRefPubMedGoogle Scholar
  52. Walters, C. 1998. Understanding the mechanisms and kinetics of seed aging. Seed Sci. Res. 8:223–244.CrossRefGoogle Scholar
  53. Walters, C. 2004. Guidelines for seed storage. In: Ex situ plant conservation: supporting species survival in the wild, eds. E. O. Guerrant, Havens, K., and Maunder, M., pp. 442–453. Covelo, CA: Island PressGoogle Scholar
  54. Walters, C., Hill, L. M., and Wheeler, L. J. 2005. Dying while dry: kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 45:751–758.CrossRefGoogle Scholar
  55. Whittier, D. P. 1996. Extending the viability of Equisetum hyemale spores. Amer. Fern J. 864:114–118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.USDA-ARS National Center for Genetic Resources PreservationFort CollinsUSA

Personalised recommendations