Biofuels pp 157-172 | Cite as

The Brazilian Experience of Sugarcane Ethanol Industry

  • Sizuo Matsuoka
  • Jesus Ferro
  • Paulo Arruda


Biomass has gained prominence in the last few years as one of the most important renewable energy sources. In Brazil, a sugarcane ethanol program called ProAlcohol was designed to supply the liquid gasoline substitution and has been running for the last 30 yr. The federal government’s establishment of ProAlcohol in 1975 created the grounds for the development of a sugarcane industry that ­currently is one of the most efficient systems for the conversion of photosynthate into different forms of energy. Improvement of industrial processes along with strong sugarcane breeding programs brought technologies that currently support a ­cropland of 7 million hectares of sugarcane with an average yield of 75 tons/ha. From the beginning of ProAlcohol to the present time, ethanol yield has grown from 2,500 to around 7,000 l/ha. New technologies for energy production from crushed sugarcane stalk are currently supplying 15% of the electricity needs of the country. Projections show that sugarcane could supply over 30% of Brazil’s energy needs by 2020. In this review, we briefly describe some historic facts of the ethanol industry, the role of sugarcane breeding, and the prospects of sugarcane biotechnology.


Sugarcane Brazilian ethanol Biofuel Biotechnology 


  1. Alexander A. G. The energy cane alternative. Elsevier, Amsterdam; 1985.Google Scholar
  2. Amaral W. A. N.; Marinho J. P.; Tarasantchi R.; Beber A.; Giuliani E. Environmental sustainability of sugarcane ethanol in Brazil. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 113–138; 2008.Google Scholar
  3. Andrietta M. G. S.; Andrietta S. R.; Steckelberg C.; Stupiello E. N. A. Bioethanol—Brazil, 30 years of Proalcool. Int. Sugar J 109: 195–200; 2007.Google Scholar
  4. ANFAVEA. Produção de autoveículos por tipo e combustível, 2008. Cited Feb. 16, 2009.
  5. Arruda P. Sugarcane transcriptome. A landmark in plant genomics in the tropics. Genet. Mol. Biol. 24: 1; 2001.CrossRefGoogle Scholar
  6. Berding N.; Roach B. T. Germplasm collection, maintenance, and use. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210; 1987.Google Scholar
  7. Bergamin Filho A.; Amorim L. Doenças de Plantas Tropicais: Epidemiologia e Controle Econômico. Ed. Agronômica Ceres, São Paulo; 1996.Google Scholar
  8. BNDES (2008) Bioetanol de Cana-de-açúcar. Energia para o Desenvolvimento Sustentável. BNDES, Rio de Janeiro. Cited Nov. 11, 2008
  9. Boddey R. Green energy from sugar cane. Chem. Ind 10: 355–358; 1993.Google Scholar
  10. Borges J. C.; Cagliari T. C.; Ramos C. H. I. Expression and variability of molecular chaperones in the sugarcane expressome. J. Plant Physiol 164: 505–513; 2007.CrossRefPubMedGoogle Scholar
  11. Calsa T.; Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C-4 metabolism and putative antisense transcripts. Plant Mol. Biol 63: 745–762; 2007.CrossRefPubMedGoogle Scholar
  12. Cox P. M.; Betts R. A.; Jones C. D.; Spall S. A.; Totterdell I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187; 2000.CrossRefPubMedGoogle Scholar
  13. Chu S.; Goldemberg J.; Arungu Olende S.; El-Ashry M.; Davis G.; Johansson T.; Keith D.; Jinghai L.; Nakicenovic N.; Pachauri R.; Shafie-Pour M.; Shpilrain E.; Socolow R.; Yamaji J.; Luguang Y. Lighting the way: Toward a sustainable energy future. Inter Academy Council, Amsterdam; 2007.Google Scholar
  14. D’Hont A.; Grivet L.; Feldmann P.; Rao S.; Berding N.; Glaszmann J. C. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol. Gen. Genet 250: 405–413; 1996.PubMedGoogle Scholar
  15. D’Hont A.; Ison D.; Alix K.; Roux C.; Glaszmann J. C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41: 221–225; 1998.CrossRefGoogle Scholar
  16. da Silva J. A. G.; Bressiani J. A. Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet. Mol. Biol 28: 294–298; 2005.Google Scholar
  17. Falco M. C.; Tullman Neto A.; Ulian E. C. Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19: 1188–1194; 2000.CrossRefGoogle Scholar
  18. FAO The State of Food and Agriculture. Part I. Biofuels: Prospects, risks and opportunities. FAO Agriculture Series no. 39. FAO, Rome; 2008.Google Scholar
  19. Fischer G.; Teixeira E.; Hizsnyik E. T.; Velthuizen H. Land use dynamics and sugarcane production. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 29–62; 2008.Google Scholar
  20. Garcia A. A. F.; Kido E. A.; Meza A. N.; Souza H. M. B.; Pinto L. R.; Pastina M. M.; Leite C. S.; da Silva J. A. G.; Ulian E. C.; Figueira A.; Souza A. P. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor. Appl. Genet 112: 298–314; 2006.CrossRefPubMedGoogle Scholar
  21. Goldemberg J. Ethanol for a sustainable energy future. Science 315: 808–810; 2007.CrossRefPubMedGoogle Scholar
  22. Goldemberg J. The Brazilian biofuels industry. Biotechnol Biofuels 1: 6; 2008. doi:10.1186/1754-6834-1-6.PubMedGoogle Scholar
  23. Goldemberg J.; Coelho S. T.; Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy 36: 2086–2097; 2008.CrossRefGoogle Scholar
  24. Grivet L.; Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol 5: 122–127; 2001.CrossRefGoogle Scholar
  25. Ha S.; Moore P. H.; Heinz D.; Kato S.; Ohmido N.; Fukui K. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol. Biol 39: 1165–1173; 1999.CrossRefPubMedGoogle Scholar
  26. Hailing P.; Simms-Borre P. Overview of lignocellulosic feedstock conversion into ethanol—focus on sugarcane bagasse. Int. Sugar J 110: 191–194; 2008.Google Scholar
  27. Hansen J.; Nazarenko L.; Ruedy R.; Sato M.; Willis J.; Del Genio A.; Koch D.; Lacis A.; Lo K.; Menon S.; Novakov T.; Perlwitz J.; Russell G.; Schmidt G. A.; Tausnev N. Earth’s energy imbalance: Confirmation and implications. Science 308: 1431–1435; 2005.CrossRefPubMedGoogle Scholar
  28. IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Agropecuario, 2006. htm. Cited Feb 5 2009.
  29. Jank, M. S. Cane for sugar, ethanol and bioelectricity: a global economy. UNICA, the Brazilian Sugarcane Industry. Cited; 2008.
  30. Jannoo N.; Grivet L.; Seguin M.; Paulet F.; Domaingue R.; Rao P. S.; Dookun A.; D’Hont A.; Glaszmann J. C. Molecular investigation of the genetic base of sugarcane cultivars. Theor. Appl. Genet 99: 171–184; 1999.CrossRefGoogle Scholar
  31. Kheshgi H. S.; Prince R. C.; Marland G. The potential of biomass fuels in the context of global climate change: Focus on transportation fuels. Ann. Rev. Energy Environ 25: 199–244; 2000.CrossRefGoogle Scholar
  32. Landell M. G. A.; Bressiani J. A. Melhoramento genético, caracterização e manejo varietal. In: Dinardo-Miranda L. L. et al. (eds) Cana-de-açúcar. Instituto Agronômico, Campinas, pp 101–155; 2008.Google Scholar
  33. Lima M. L. A.; Garcia A. A. F.; Oliveira K. M.; Matsuoka S.; Arizono H.; de Souza C. L.; de Souza A. P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet 104: 30–38; 2002.CrossRefPubMedGoogle Scholar
  34. Lu Y. H.; D’Hont A.; Paulet F.; Grivet L.; Arnaud M.; Glaszmann J. C. Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78: 217–226; 1994.CrossRefGoogle Scholar
  35. Maccheroni, W.; Jordão, H.; Degaspari, R.; Moura, G. L.; Matsuoka, S. Development of a dependable microsatellite-based fingerprinting system for sugarcane. Sugar Cane Int. 27: 47–52; 2009.Google Scholar
  36. Macedo I. C. Greenhouse gas emissions and energy balance in bioethanol production and utilization in Brazil. Biomass Bioenergy 14: 77–81; 1998.CrossRefGoogle Scholar
  37. Macedo I. C.; Seabra E. A. Mitigation of GHG emissions using sugarcane bioethanol. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 95–111; 2008.Google Scholar
  38. Machado, Jr. G. R.; Silva, W. M.; Irvine, J. E. Sugarcane breeding in Brazil: The Copersucar program. In: Copersucar International Sugarcane Breeding Workshop São Paulo, Copersucar, pp 217–232; 1987.Google Scholar
  39. Mangelsdorf A. J. Um programa de melhoramento da cana-de-açúcar para a agroindústria canavieira do Brasil. Brasil Açucar 69: 208–223; 1967.Google Scholar
  40. Martines-Filho, J.; Burnquist, H. L.; Vian, C. E. F. Bioenergy and the rise of sugarcane-based ethanol in Brazil. Choices, AAEA, 2nd Quarter, 2006.
  41. Matsuoka S. The recent evolution of sugarcane varieties in Brazil. STAB 17: 37; 1999.Google Scholar
  42. Matsuoka S.; Bassinello A. I.; Martins S.; Arizono H. A retrospective analysis of crop damage caused by sugarcane rust in Brazil. II. Losses in spring planted cane. In: Rao G. P. et al. (ed) Current trends in sugarcane pathology. International Books and Periodicals Supply Service, New Delhi, pp 27–35; 1994.Google Scholar
  43. Matsuoka S.; Garcia A. A. F.; Arizono H. Melhoramento da cana-de-açúcar. In: Borém A (ed) Melhoramento de Espécies Cultivadas. Editora UFV, Viçosa, Minas Gerais, 2nd ed, pp 225–274; 2005.Google Scholar
  44. Matsuoka S.; Meneghin S. P. Yellow leaf syndrome and alleged pathogen: casual and not causal relationship. Proc. ISSCT Congress 23: 382–389; 1999.Google Scholar
  45. MME – Ministério das Minas e Energia. Matriz energética 2007 Brasil. Cited Jan. 12, 2009; 2008.Google Scholar
  46. Moreira J. R.; Goldemberg J. The alcohol program. Energy Policy 27: 227–229l; 1999.CrossRefGoogle Scholar
  47. Natale Netto J. A Saga do Álcool. Novo Século Editora, Osasco; 2005.Google Scholar
  48. Nemir A. S. Alcohol fuels—the Brazilian experience and its implications for the United States. Sugar J 45: 10–13; 1983.Google Scholar
  49. Nogueira F. T. S.; de Rosa V. E.; Menossi M.; Ulian E. C.; Arruda P. RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132: 1811–1824; 2003.CrossRefPubMedGoogle Scholar
  50. Nogueira F. T. S.; Schlogl P. S.; Camargo S. R. et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169: 93–106; 2005.CrossRefGoogle Scholar
  51. Oliveira K. M.; Pinto L. R.; Marconi T. G.; Margarido G. R. A.; Pastina M. M.; Teixeira L. H. M.; Figueira A. V.; Ulian E. C.; Garcia A. A. F.; Souza A. P. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol. Breed 20: 189–208; 2007.CrossRefGoogle Scholar
  52. Papini-Terzi F. S.; Rocha F. R.; Vencio R. Z. N.; Oliveira K. C.; Felix J. D.; Vicentini R.; Rocha C. D.; Simoes A. C. Q.; Ulian E. C.; Di Mauro S. M. Z.; Da Silva A. M.; Pereira C. A. D.; Menossi M.; Souza G. M. Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Research 12: 27–38; 2005.CrossRefPubMedGoogle Scholar
  53. Pinto L. R.; Oliveira K. M.; Marconi T.; Garcia A. A. F.; Ulian E. C.; de Souza A. P. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125: 378–384; 2006.CrossRefGoogle Scholar
  54. Pinto L. R.; Oliveira K. M.; Ulian E. C.; Garcia A. A. F.; de Souza A. P. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47: 795–804; 2004.CrossRefPubMedGoogle Scholar
  55. Rocha F. R.; Papini-Terzi F. S.; Nishiyama M. Y.; Vencio R. Z. N.; Vicentini R.; Duarte R. D. C.; de Rosa V. E.; Vinagre F.; Barsalobres C.; Medeiros A. H.; Rodrigues F. A.; Ulian E. C.; Zingaretti S. M.; Galbiatti J. A.; Almeida R. S.; Figueira A. V. O.; Hemerly A. S.; Silva-Filho M. C.; Menossi M.; Souza G. M. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8: 71; 2007.CrossRefPubMedGoogle Scholar
  56. Rosillo-Calle F. A re-assessment of the Brazilian National Alcohol Programme (PNA). Ind. Biotech 3: 11–16; 1984.Google Scholar
  57. Rosillo-Calle F.; Cortez L. A. B. Towards ProAlcool II—a review of the Brazilian bioethanol programme. Biomass Bioenergy 14: 115–124; 1998.CrossRefGoogle Scholar
  58. Rossi M.; Araujo P. G.; Paulet F.; Garsmeur O.; Dias V. M.; Chen H.; Van Sluys M. A.; D’Hont A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol. Genet. Genom 269: 406–419; 2003.CrossRefGoogle Scholar
  59. Scaramucci J. A.; Perin C.; Pulino P. et al. Energy from sugarcane bagasse under electricity rationing in Brazil: a computable general equilibrium model. Energy Policy 34: 986–992; 2006.CrossRefGoogle Scholar
  60. Somerville C. The billion-ton biofuels vision. Science 312: 1277; 2006.CrossRefPubMedGoogle Scholar
  61. Sreenivasan T. V.; Ahloowalia B. S.; Heinz D. J. Cytogenetics. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253; 1987.Google Scholar
  62. Stevenson G. C. Genetics and breeding of sugarcane. Longmans, London. 1965.Google Scholar
  63. Sticklen M. B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet 9: 433–443; 2008.CrossRefPubMedGoogle Scholar
  64. Tew T. L. New varieties. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594; 1987.Google Scholar
  65. Vettore A. L.; da Silva F. R.; Kemper E. L. et al. The libraries that made SUCEST. Genet. Mol. Biol. 24: 1–7; 2001.CrossRefGoogle Scholar
  66. Vettore A. L.; da Silva F. R.; Kemper E. L. et al. Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res. 13: 2725–2735; 2003.CrossRefPubMedGoogle Scholar
  67. Xavier M.R. The Brazilian sugarcane ethanol experience. Competitive Enterprise Institute, Washington, DC200714p.
  68. Yuan J. S.; Tiller K. H.; Al-Ahmad H.; Stewart N. R.; Stewart C. N. Plants to power: Bioenergy to fuel the future. Trend Plant Sci. 13: 421–429; 2008.CrossRefGoogle Scholar
  69. Walter A. Cortez, L. An historical overview of the Brazilian bioethanol program. Renew. Energy Dev. 11no. 1: 1–4; 1999.Google Scholar
  70. Wigley T. M. L. The climate change commitment. Science 307: 1766–1769; 2005.CrossRefPubMedGoogle Scholar
  71. Zuurbier P.; van de Vooren J. Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen; 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Alellyx S.A., Rua James Clerk MaxwellCampinasBrazil
  2. 2.Departamento de Genética e Evolução, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations