Skip to main content

Short-Rotation Woody Crops for Bioenergy and Biofuels Applications

  • Chapter
  • First Online:
Biofuels

Abstract

Purpose-grown trees will be part of the bioenergy solution in the United States, especially in the Southeast where plantation forestry is prevalent and ­economically important. Trees provide a “living biomass inventory” with existing end-use markets and associated infrastructure, unlike other biomass species such as perennial grasses. The economic feasibility of utilizing tree biomass is improved by increasing productivity through alternative silvicultural systems, improved breeding and biotechnology. Traditional breeding and selection, as well as the introduction of genes for improved growth and stress tolerance, have enabled high growth rates and improved site adaptability in trees grown for industrial applications. An example is the biotechnology-aided improvement of a highly productive tropical Eucalyptus hybrid, Eucalyptus grandis × Eucalyptus urophylla. This tree has acquired freeze tolerance by the introduction of a plant transcription factor that up-regulates the cold-response pathways and makes possible commercial plantings in the Southeastern United States. Transgenic trees with reduced lignin, modified lignin, or increased cellulose and hemicellulose will improve the efficiency of feedstock conversion into biofuels. Reduced lignin trees have been shown to improve efficiency in the pre-treatment step utilized in fermentation systems for biofuels production from lignocellulosics. For systems in which thermochemical or gasification approaches are utilized, increased density will be an important trait, while increased lignin might be a desired trait for direct firing or co-firing of wood for energy. Trees developed through biotechnology, like all transgenic plants, need to go through the regulatory process, which involves biosafety and risk assessment analyses prior to commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson G.; Asikainen A.; Bjorheden R.; Hall P. W.; Hudson J. B.; Jirjis R.; Mead D. J.; Nurmi J.; Weetman G. F. Production of forest energy. In: Richardson J.; Bjorheden R.; Hakkila P.; Lowe A. T.; Smith C. T. (eds) Bioenergy from sustainable forestry: guiding principles and practice. Kluwer, The Netherlands; 2002. Dordrecht 49-123.

    Chapter  Google Scholar 

  • Anterola A. M.; Lewis N. G. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61: 221–294; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Benedict C.; Skinner J. S.; Meng R.; Chang Y.; Bhalerao R.; Huner N. P.; Finn C. E.; Chen T. H.; Hurry V. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 29: 1259–1272; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W.; Ralph J.; Baucher M. Lignin biosynthesis. Ann. Rev. Plant Biol. 54: 519–546; 2003.

    Article  CAS  Google Scholar 

  • Burdon R. W.; Libby W. J. Genetically modified forests: from Stone age to modern biotechnology. Forest History Society, Durham, North Carolina, USA; 2006.

    Google Scholar 

  • Busov V. B.; Meilan R.; Pearce, D. W.; Ma C.; Rood S. B.; Strauss S. H. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Phys. 132: 1–9; 2003.

    Article  Google Scholar 

  • Chiang V. L.; Funaoka M. The difference between guaiacyl and guaiacyl-syringyl lignins in their responses to Kraft delignification. Holzforschung 44: 309–313; 1990.

    Article  CAS  Google Scholar 

  • Chichkova S.; Arellano J.; Vance C. P.; Hernandex G. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J. Exp. Bot. 52: 2079–2084; 2001.

    CAS  PubMed  Google Scholar 

  • Coleman H. D.; Samuels A. L.; Guy R. D.; Mansfield S. D. Perturbed lignification impacts tree growth in hybrid poplar—a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Phys. 148: 1229–1237; 2008.

    Article  CAS  Google Scholar 

  • Davis A. A.; Trettin C. C. Sycamore and sweetgum plantation productivity on former agricultural land in South Carolina. Biomass and Bioenergy. 30: 769–777; 2006.

    Article  Google Scholar 

  • Dickmann D. L. Silviculture and biology of short rotation woody crops in temperate regions: then and now. Biomass Bioenergy. 30: 696–705; 2006.

    Article  Google Scholar 

  • Dubouzet J. G.; Sakuma Y.; Ito Y.; Kasuga M.; Dubouzet E. G.; Miura S.; Seki M.; Shinozaki K.; Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33: 751–763; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Duguay J.; Jamal S.; Wang T. W.; Thompson J. E. Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. J. Plant Phys. 164: 408–420; 2007.

    Article  CAS  Google Scholar 

  • El-Khatib R.; Hamerlynck E. P.; Gallardo F.; Kirby E. G. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Phys. 24: 729–736; 2004.

    CAS  Google Scholar 

  • English B. C.; De La Torre, Ugarte D. G.; Jensen K.; Hellwinckel C.; Menard J.; Wilson B.; Roberts R.; Walsh M. (2006) 25% Renewable energy for the United States by 2025: Agricultural and Economic Impacts. University of Tennessee Agricultural Economics, http://www.25x25.org/storage/25x25/documents/RANDandUT/UT-EXECsummary25X25FINALFF.pdf 2006.

  • Frederick Jr. W. J.; Lien S. J.; Courchene C. E.; DeMartini N. A.; Ragauskas A. J.; Iisa K. Production of ethanol from carbhohydrates from loblolly pine: a technical and economic assessment. Bioresour Technol 99: 5051–5057; 2008.

    CAS  PubMed  Google Scholar 

  • Fu J.; Sampalo R.; Gallardo F.; Canavos F. M.; Kirby E. G. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Envir. 26: 411–418; 2003.

    Article  CAS  Google Scholar 

  • Goicoechea M.; Lacombe E.; Legay S.; Mihaljevic S.; Rech P.; Jauneau A.; Lapierre C.; Pollet B.; Verhaegen D.; Chaubet-Gigot N.; Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalytpus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J. 43: 553–567; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gomez Jimenez M. D.; Canas Clemente L. A.; Madueno Albi F.; Beltran Porter J. P. Sequence regulating the anther-specific expression of a gene and its use in the production of androsterile plants and hybrid seeds. U.S. Patent No. 7078593; 2006.

    Google Scholar 

  • Grabber J. H.; Ralph J.; Hatfield R. D.; Quideau S. p-hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on cell wall degradation. J. Agric. Food Chem.45: 2530–2532; 1997.

    Article  CAS  Google Scholar 

  • Good A. G.; Swarat A. K.; Muench D. G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9(597–6): 05; 2004.

    Google Scholar 

  • Hsieh T. H.; Lee J. T.; Yang P. T.; Chiu L. H.; Charng Y. Y.; Wang Y. C.; Chan M. T. Heterologous expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129: 1086–1094; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hu J. J.; Tian Y. C.; Han Y. F.; Li L.; Zhang B. E. Field evaluation of insect resistant transgenic Populus nigra trees. Euphytica 121: 123–127; 2001.

    Article  Google Scholar 

  • Huntley S. K.; Ellis D.; Gilbert M.; Chapple C.; Mansfield S. D. Significant increases in pulping efficiency in C4H–F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J. Agric. Food Chem. 51: 6178–6183; 2003.

    Article  CAS  PubMed  Google Scholar 

  • ISAAA. The International service for the acquisition of Agri-Biotech Applications (ISAAA) report, Global Status of Commercialized Biotech/GM Crops: 2008, http://www.isaaa.org 2008.

  • Ito Y.; Katsura K.; Maruyama K.; Taji T.; Kobayashi M.; Seki M.; Shinozaki K.; Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Phys. 47: 141–153; 2006.

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen K. R.; Gilmour S. J.; Zarka D. G.; Schabenberger O.; Thomashow M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen K. R.; Kleff S.; Amundsen K. L.; Zhang X.; Haake V.; Zhang J. Z.; Deits T.; Thomashow M. F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Phys. 127: 910–917; 2001.

    Article  Google Scholar 

  • Just R. E., Alston J. M., Zilberman D. (eds.). Regulating Agricultural Biotechnology: Economics and Policy. Springer, New York; 2006.

    Google Scholar 

  • Kasuga M.; Liu Q.; Miura S.; Yamaguchi-Shinozaki K.; Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17: 287–291; 1999.

    Article  CAS  Google Scholar 

  • Kasuga M.; Miura S.; Shinozaki K.; Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346–350; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F.; Takumi S.; Kume S.; Ishibashi M.; Ohno R.; Murai K.; Nakamura C. Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot. 56: 887–895; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Leplé J.-C.; Dauwe R.; Morreel K.; Storme V.; Lapierre C.; Pollet B.; Naumann A.; Kang K.-Y.; Kim H.; Ruel K.; Lefèbvre A.; Joseleau J.-P.; Grima-Pettenati J.; De Rycke R.; Andersson-Gunnerås S.; Erban A.; Fehrle I.; Petit-Conil M.; Kopka J.; Polle A.; Messens E.; Sundberg B.; Mansfield S. D.; Ralph J.; Pilate G.; Boerjan W. Down regulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19: 3669–3691; 2007.

    Article  PubMed  Google Scholar 

  • Li X.; Jing-Ke Weng J.-K.; Chapple C. Improvement of biomass through lignin modification. Plant J. 54: 569–581; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q.; Kasuga M.; Sakuma Y.; Abe H.; Miura S.; Yamaguchi-Shinozaki K.; Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–406; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Man Hui-min R.; Boriel R.; El-Khatib R.; Kirby E. G. Characterization of transgenic poplar with ectopic expression of pine cyotsolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol (167): 31–39; 2005.

    Google Scholar 

  • McKeand S.; Mullin T.; Byram T.; White T. Deployment of genetically improved loblolly and slash pine in the South. J. Forestry. 101(3): 32–37; 2003.

    Google Scholar 

  • Mead D. J. Forests for energy and the role of planted trees. Crit. Rev. Plant sci 24: 407–421; 2005.

    Article  Google Scholar 

  • Mercker D. Short rotation woody crops for biofuels. University of Tennessee Agricultural Experiment Station. http://www.utextension.utk.edu/publications/spfiles/SP702-C.pdf 2007

  • Mitsuda N.; Iwase, A.; Yamamoto H.; Yoshida, M.; Seki, M.; Shinozaki K.; Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabiodopsis. Plant Cell 19: 270–280; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah M. E.; Nasrallah J. B.; Thorsness M. K. Isolated DNA elements that direct pistil-specific and anther-specific gene expression and methods of using same. United States Patent No. 5,859,328; 1999.

    Google Scholar 

  • Nathan R.; Katul G. G.; Horn H. S.; Thomas S. M.; Oren R.; Avissar R.; Pacala S. W.; Levin S. A. Mechanisms of long-distance dispersal of seeds by wind. Nature 418: 409–413; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Nehra N. S.; Becwar M. R.; Rottmann W. H.; Pearson L.; Chowdhury K.; Chang S.; Wilde H. D.; Kodrzycki R. J.; Zhang C.; Gause K. C.; Parks D. W.; Hinchee M. A. Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell. Dev. Biol. Plant. 41: 701–717; 2005.

    Article  CAS  Google Scholar 

  • Patzlaff A.; McInnis S.; Courtenay A.; Surman C.; Newman L. J.; Smith C.; Bevan M. W.; Mansfield S.; Whetten R. W.; Sederoff R. R.; Campbell M. M. Characterisation of a pine MYB that regulates lignification. Plant J. 46: 743–754; 2003.

    Article  Google Scholar 

  • Perlack R. D.; Turhollow W. L. L.; AF G. R. L.; Stokes B. J.; Erbach D. C. Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN; 2005.

    Book  Google Scholar 

  • Polle A.; Altman A.; Jiang X. Towards genetic engineering for drought tolerance in trees. In: Fladung M.; Ewald D. (eds) Tree transgenesis recent developments. Springer, Berlin; 2006.

    Google Scholar 

  • Qin F.; Sakuma Y.; Li J.; Liu Q.; Li Y. Q.; Shinozaki K.; Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Phys. 45: 1042–1052; 2004.

    Article  CAS  Google Scholar 

  • Re D. B.; Rogers S. G.; Stone T. B.; Serdy F. S. Herbicide tolerant plants developed through biotechnology: regulatory considerations in the United States. In: Duke S. O. (ed) Herbicide resistant crops. CRC, New York, pp 341–347; 1996.

    Google Scholar 

  • Rowell R. M. Handbook of Wood Chemistry and wood composites. Taylor & Francis, a CRC Press Book. ISBN 0849315883, 9780849315886; 2005.

    Google Scholar 

  • Sedjo R. A. Biotechnology in forestry: considering the costs and benefits. Resour. Future 145: 10–12; 2001.

    Google Scholar 

  • Shani Z.; Dekel M.; Tsabary G.; Goren R.; Shoseyov O. Growth enhancement of transgenic poplar plants by over expression of Arabidopsis thaliana endo-1, 4-β–glucanase (cel1). Mol Breed 14: 321–330; 2004.

    Article  Google Scholar 

  • Short Rotation Forestry Handbook. University of Aberdeen. http://www.abdn.ac.uk/wsrg/srfhbook 1995.

  • Sims R. H. Short rotation coppice tree species selection for woody biomass production in New Zealand. Biomass Bioenergy 20: 329–335; 2001.

    Article  Google Scholar 

  • Sims R. H.; Venturi P. All year-round harvesting of short rotation coppice Eucalyptus compared with the delivered costs of biomass from more conventional short season, harvesting systems. Biomass Bioenergy 26: 27–37; 2004.

    Article  Google Scholar 

  • Stricker J. A.; Rockwood D. L.; Segrest S. A.; Alker G. R; Prine G. M.; Carter D. R. Short Rotation Woody Crops For Florida. University of Florida http://www.treepower.org/papers/strickerny.doc 2000.

  • TimberMart-South Market News Quarterly 2008 13:1 pg. 28. http://www.tmart-south.com/tmart/pdf/Qtr_01Q08news.pdf

  • Tuskan G.; DiFazio S.; Hellsten U.; Jansson S.; Rombauts S.; Putnam N.; Sterck L.; Bohlmann J.; Schein J.; Bhalerao R. R.; Bhalerao R. P.; Blaudez D.; Boerjan W.; Brun A.; Brunner A.; Busov V.; Campbell M.; Carlson J.; Chalot M.; Chapman J.; Chen G.; Cooper D.; Coutinho P. M.; Couturier J.; Covert S.; Cunningham R.; Davis J.; Degroeve S.; dePamphilis C.; Detter J.; Dirks B.; Dubchak I.; Duplessis S.; Ehlting J.; Ellis B.; Gendler K.; Goodstein D.; Gribskov M.; Grigoriev I.; Groover A.; Gunter L.; Hamberger B.; Heinze B.; Helariutta Y.; Henrissat B.; Holligan D.; Islam-Faridi N.; Jones-Rhoades M.; Jorgensen R.; Joshi C.; Kangasjärvi J.; Karlsson J.; Kelleher C.; Kirkpatrick R.; Kirst M.; Kohler A.; Kalluri U.; Larimer F.; Leebens-Mack J.; Leplé J. C.; Déjardin A.; Pilate G.; Locascio P.; Lucas S.; Martin F.; Montanini B.; Napoli C.; Nelson D. R.; Nelson C. D.; Nieminen K. M.; Nilsson O.; Peter G.; Philippe R.; Poliakov A.; Ralph S.; Richardson P.; Rinaldi C.; Ritland K.; Rouzé P.; Ryaboy D.; Salamov A.; Schrader J.; Segerman B.; Sterky F.; Souza C.; Tsai C.; Unneberg P.; Wall K. The genome of black cottonwood, populus trichocarpa (Torr. & Gray). Science 313(5793): 1596–1604; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Vagujfalvi A.; Aprile A.; Miller A.; Dubcovsky J.; Delugu G.; Galiba G.; Cattivelli L. The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet. Genomics. 274: 506–514; 2005.

    Article  CAS  PubMed  Google Scholar 

  • van Frankenhuyzen K.; Beardmore T. Current status and environmental impact of transgenic forest trees. Can. J. For. Res. 34: 1163–1180; 2004.

    Article  Google Scholar 

  • Vanholme R.; Morreel K.; Ralph J.; Boerjan W. Lignin engineering. Curr. Opinion Plant Biol. 11: 278–285; 2008.

    Article  CAS  Google Scholar 

  • Weng J.-K.; Li X.; Bonawitz N.; Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opinion Biotech. 19: 166–172; 2008.

    Article  CAS  Google Scholar 

  • White R. H. Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci. 19: 446–452; 1987.

    CAS  Google Scholar 

  • Williams C. G. Framing the issues on transgenic forests. Nat. Biotechnol 23: 530–532; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Williams C. G.; Davis B. Rate of transgene spread via long-distance seed dispersal in Pinus taeda. For Ecol Manag. 217: 95–102; 2005.

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K.; Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236: 331–340; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K.; Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high salt-stress. Plant Cell.6: 251–264; 1994.

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky M. F. Methods of Suppressing Flowering in Transgenic Plants. United States Patent No. 6,987,214 B1; 2006.

    Google Scholar 

  • Yi S. Y.; Kim J. H.; Joung Y. H.; Lee S.; Kim W. T.; Yu S. H.; Choi D. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol.136: 2862–2874; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X.; Fowler S. G.; Cheng H.; Lou Y.; Rhee S. Y.; Stockinger E. J.; Thomashow M. F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39: 905–919; 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Hinchee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hinchee, M. et al. (2011). Short-Rotation Woody Crops for Bioenergy and Biofuels Applications. In: Tomes, D., Lakshmanan, P., Songstad, D. (eds) Biofuels. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7145-6_8

Download citation

Publish with us

Policies and ethics