Biofuels pp 285-347 | Cite as

Biodiesel Production, Properties, and Feedstocks

  • Bryan R. Moser


Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, ­usually methanol, biodiesel has many important technical advantages over petrodiesel, such as inherent lubricity, low toxicity, derivation from a renewable and domestic feedstock, superior flash point and biodegradability, negligible sulfur content, and lower exhaust emissions. Important disadvantages of biodiesel include high feedstock cost, inferior storage and oxidative stability, lower volumetric energy content, inferior low-temperature operability, and in some cases, higher NO x exhaust emissions. This chapter covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biodiesel, the influence of biodiesel composition on fuel properties, the influence of blending biodiesel with other fuels on fuel properties, alternative uses for biodiesel, and value-added uses of glycerol, a co-product of biodiesel production. A particular emphasis is placed on alternative feedstocks for biodiesel production. Lastly, future challenges and outlook for biodiesel are discussed.


Alternative feedstocks Biodiesel Fatty acid FAME Fuel properties Methanolysis Transesterification 


  1. Ajav E. A.; Singh B.; Bhattacharya T. K. Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energ. Convers. Manage. 41: 1533–1541; 2000. doi:10.1016/S0196-8904(99)00175-2.Google Scholar
  2. Alamu O. J.; Waheed M. A.; Jekayinfa S. O. Effect of ethanol–palm kernel oil ratio on alkali-catalyzed biodiesel yield. Fuel 87: 1529–1533; 2008. doi:10.1016/j.fuel.2007.08.011.Google Scholar
  3. Albuquerque M. C. G.; Machado Y. L.; Torres A. E. B.; Azevedo D. C. S.; Cavalcante C. L. Jr.; Firmiano L. R.; Parente E. J. S. Jr. Properties of biodiesel oils formulated using different biomass sources and their blends. Renew Energ. 34: 857–859; 2009. doi:10.1016/j.renene.2008.07.006.Google Scholar
  4. Ali Y.; Hanna M. A. Alternative diesel fuels from vegetable oils. Bioresource. Technol. 50: 153–163; 1994. doi:10.1016/0960-8524(94)90068-X.Google Scholar
  5. Alptekin E.; Canakci M. Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew Energ 33: 2623–2630; 2008. doi:10.1016/j.renene.2008.02.020.Google Scholar
  6. Alptekin E.; Canakci M. Characterization of the key fuel properties of methyl ester-diesel fuel blends. Fuel 88: 75–80; 2009. doi:10.1016/j.fuel.2008.05.023.Google Scholar
  7. Altiparmak D.; Keskin A.; Koca A.; Guru M. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresource. Technol. 98: 241–246; 2007. doi:10.1016/j.biortech.2006.01.020.Google Scholar
  8. Anonymous Dictionary Section. In: Gunstone F. D.; Harwood J. L.; Dijkstra A. J. (eds) The lipid handbook. 3rd ed. CRC, Boca Raton, pp 444–445; 2007.Google Scholar
  9. Antolin G.; Tinaut F. V.; Briceno Y.; Castano V.; Perez C.; Ramirez A. I. Optimisation of biodiesel production by sunflower oil transesterification. Bioresource. Technol. 83: 111–114; 2002. doi:10.1016/S0960-8524(01)00200-0.Google Scholar
  10. ASTM Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D6751-08; 2008a.Google Scholar
  11. ASTM Standard specification for diesel fuel oil, biodiesel blend (B6 to B20). In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D7467-08a; 2008b.Google Scholar
  12. ASTM Standard specification for diesel fuel oils. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D975-08a; 2008c.Google Scholar
  13. ASTM Standard specification for fuel oils. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D396-08b; 2008d.Google Scholar
  14. Balan V.; Rogers C. A.; Chundawat S. P. S.; da Costa Sousa L.; Slininger P. J.; Gupta R.; Dale B. E. Conversion of extracted oil cake fibers into bioethanol including DDGS, canola, sunflower, sesame, soy, and peanut for integrated biodiesel processing. J. Am. Oil. Chem. Soc. 86: 157–165; 2009. doi:10.1007/s11746-008-1329-4.Google Scholar
  15. Ban-Weiss G. A.; Chen J. Y.; Buchholz B. A.; Dibble R. W. A numerical investigation into the anomalous slight NO x increase when burning biodiesel; A new (old) theory. Fuel Process Technol. 88: 659–667; 2007. doi:10.1016/j.fuproc.2007.01.007.Google Scholar
  16. Banapurmath N. R.; Tewari P. G.; Hosmath R. S. Performance and emissions characteristics of a DI compression ignition engine operated on Honge, Jatropha, and sesame oil FAME. Renew Eng 33: 1982–1988; 2008. doi:10.1016/j.renene.2007.11.012.Google Scholar
  17. Barbour, R. H.; Rickeard, D. J.; Elliott, N. G. Understanding diesel lubricity. SAE Tech Pap Ser 2000-01-1918; 2000.Google Scholar
  18. Behr A.; Eilting J.; Irawadi K.; Leschinski J.; Linder F. Improved utilization of renewable resources: new important derivatives of glycerol. Green Chem. 10: 13–30; 2008. doi:10.1039/b710561d.Google Scholar
  19. Benjumea P.; Agudelo J.; Agudelo A. Basic properties of palm oil biodiesel-diesel blends. Fuel 87: 2069–2075; 2008. doi:10.1016/j.fuel.2007.11.004.Google Scholar
  20. Bhale P. V.; Deshpande N. V.; Thombre S. B. Improving the low temperature properties of biodiesel fuel. Renew Energ. 34: 794–800; 2009. doi:10.1016/j.renene.2008.04.037.Google Scholar
  21. Bhatnagar A. K.; Kaul S.; Chhibber V. K.; Gupta A. K. HFRR studies on FAME of nonedible vegetable oils. Energ. Fuel 20: 1341–1344; 2006. doi:10.1021/ef0503818.Google Scholar
  22. Bhatt Y. C.; Murthy N. S.; Datta R. K. Use of mahua oil (Madhuca indica) as a diesel fuel extender. J. Institutional Eng. (India): Agric. Eng. Div. 85: 10–14; 2004.Google Scholar
  23. Bondioli P.; Cortesi N.; Mariani C. Identification and quantification of steryl glucosides in biodiesel. Eur. J. Lipid Sci. Technol. 110: 120–126; 2008. doi:10.1002/ejlt.200700158.Google Scholar
  24. Bondioli P.; Gasparoli A.; Bella L. D.; Tagliabue S.; Toso G. Biodiesel stability under commercial storage conditions over one year. Eur. J. Lipid Sci. Technol. 105: 35–741; 2003. doi:10.1002/ejlt.200300783.Google Scholar
  25. Boocock D. G. B.; Konar S. K.; Mao V.; Lee C.; Buligan S. Fast formation of high-purity FAME from vegetable oils. J. Am. Oil. Chem. Soc. 75: 1167–1172; 1998. doi:10.1007/s1746-998-0130-8.Google Scholar
  26. Boocock D. G. B.; Konar S. K.; Mao V.; Sidi H. Fast one-phase oil-rich processes for the preparation of vegetable oil FAME. Biomass. Bioenerg. 11: 43–50; 1996a. doi:10.1016/0961-9534(95)00111-5.Google Scholar
  27. Boocock D. G. B.; Konar S. K.; Sidi H. Phase diagrams for oil/methanol/ether mixtures. J. Am. Oil. Chem. Soc. 73: 1247–1251; 1996b. doi:10.1007/BF02525453.Google Scholar
  28. Bostyn S.; Duval-Onen F.; Porte C.; Coic J. P.; Fauduet H. Kinetic modeling of the degradation of α-tocopherol in biodiesel-rape methyl ester. Bioresource Technol. 99: 6439–6445; 2008. doi:10.1016/j.biortech.2007.11.054.Google Scholar
  29. Bouaid A.; Bajo L.; Martinez M.; Aracil J. Optimization of biodiesel production from jojoba oil. Process Saf. Environ. 85: 378–382; 2007. doi:10.1205/psep07004.Google Scholar
  30. Breccia A.; Esposito B.; Breccia Fratadocchi G.; Fini A. Reaction between methanol and commercial seed oils under microwave irradiation. J. Microwave Power EE 34: 3–8; 1999.Google Scholar
  31. Bringi N. V. Non-traditional oilseeds and oils of India. Oxford and IBH, New Delhi; 1987.Google Scholar
  32. Can O.; Celikten I.; Usta N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection Diesel engine running at different injection pressures. Energ. Convers. Manage. 45: 2429–2440; 2004. doi:10.1016/j.enconman.2003.11.024.Google Scholar
  33. Canakci M.; Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biot. 35: 431–441; 2008. doi:10.1007/s10295-008-0337-6.Google Scholar
  34. Canakci M.; Van Gerpen J. Biodiesel production via acid catalysis. Trans. ASAE 42: 1203–1210; 1999.Google Scholar
  35. Canakci M.; Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 44: 1429–1436; 2001.Google Scholar
  36. Canakci M.; Van Gerpen J. A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans. ASAE 46: 945–954; 2003a.Google Scholar
  37. Canakci M.; Van Gerpen J. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Trans. ASAE 46: 937–944; 2003b.Google Scholar
  38. Canoira L.; Alcantara R.; Garcia-Martinez M. J.; Carrasco J. Biodiesel from jojoba oil-wax: transesterification with methanol and properties as a fuel. Biomass. Bioenerg. 30: 76–81; 2006. doi:10.1016/j.biombioe.2005.07.002.Google Scholar
  39. Cardone M.; Prati M. V.; Rocco V.; Seggiani M.; Senatore A.; Vitolo S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environ. Sci. Technol. 36: 4656–4662; 2002. doi:10.1021/es011078y.PubMedGoogle Scholar
  40. Cetinkaya M.; Karaosmanoglu F. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energ. Fuel 18: 1888–1895; 2004. doi:10.1021/ef049891c.Google Scholar
  41. Chang D. Y. Z.; Van Gerpen J. H.; Lee I.; Johnson L. A.; Hammond E. G.; Marley S. J. Fuel properties and emissions of soybean oil esters as diesel fuel. J. Am. Oil. Chem. Soc. 73: 1549–1555; 1996. doi:10.1007/BF02523523.Google Scholar
  42. Chapagain B. P.; Yehoshua Y.; Wiesman Z. Desert date (Balanites aegyptiaca) as an arid lands sustainable bioresource for biodiesel. Bioresource Technol. 100: 1221–1226; 2009. doi:10.1016/j.biortech.2008.09.005.Google Scholar
  43. Chiou B. S.; El-Mashad H. M.; Avena-Bustillos R. J.; Dunn R. O.; Bechtel P. J.; McHugh T. H.; Imam S. H.; Glenn G. M.; Ortz W. J.; Zhang R. Biodiesel from waste salmon oil. Trans. ASABE 51: 797–802; 2008.Google Scholar
  44. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306; 2007. doi:10.1016/j.biotechadv.2007.02.001.PubMedGoogle Scholar
  45. Chiu C. W.; Schumacher L. G.; Suppes G. J. Impact of cold flow improvers on soybean biodiesel blend. Biomass. Bionerg. 27: 485–491; 2004. doi:10.1016/j.biombioe.2004.04.006.Google Scholar
  46. Choi C. Y.; Reitz R. D. An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engines. Fuel 78: 1303–1317; 1999. doi:10.1016/S0016-2361(99)00058-7.Google Scholar
  47. Committee for Standardization Automotive fuels—fatty acid FAME (FAME) for diesel engines—requirements and test methods. European Committee for Standardization, Brussels; 2003a. Method EN 14214.Google Scholar
  48. Committee for Standardization Heating fuels—fatty acid FAME (FAME)—requirements and test methods. European Committee for Standardization, Brussels; 2003b. Method EN 14213.Google Scholar
  49. Committee for Standardization Automotive fuels—diesel—requirements and test methods. European Committee for Standardization, Brussels; 2004. Method EN 590.Google Scholar
  50. Dailey O. D.; Prevost N. T.; Strahan G. D. Synthesis and structural analysis of branched-chain derivatives of methyl oleate. J. Am. Oil Chem. Soc. 85: 647–653; 2008. doi:10.1007/s11746-008-1235-9.Google Scholar
  51. Dantas M. B.; Almeida A. A. F.; Conceicao M. M.; Fernandes V. J. Jr.; Santos I. M. G.; Silva F. C.; Soledade L. E. B.; Souza A. G. Characterization and kinetic compensation effect of corn biodiesel. J. Therm. Anal. Calorim. 87: 847–851; 2007. doi:10.1007/s10973-006-7786-9.Google Scholar
  52. Danzer, M. F.; Ely, T. L.; Kingery, S. A.; McCalley, W. W.; McDonald, W. M.; Mostek, J.; Schultes, M. L. Biodiesel cold filtration process. US Pat Appl 20070175091, filed 02/01/2007; 2007.Google Scholar
  53. Darnoko D.; Cheryan M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 77: 1263–1267; 2000. doi:10.1007/s11746-000-0198-y.Google Scholar
  54. Dasari M. A.; Kiatsimkul P. P.; Sutterlin W. R.; Suppes G. J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A-Gen. 281: 225–231; 2005. doi:10.1016/j.apcata.2004.11.033.Google Scholar
  55. Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energ. Convers. Manage. 44: 2093–2109; 2003. doi:10.1016/S0196-8904(02)00234-0.Google Scholar
  56. Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress Energ. Combust. 31: 466–487; 2005. doi:10.1016/j.pecs.2005.09.001.Google Scholar
  57. Demirbas A. Biodiesel production via non-catalytic SCF method and biodiesel fuel charactertistics. Energ.convers.Manage.47:2271–2282;2006.doi:10.1016j.enconomon.2005:11.019.Google Scholar
  58. Demirbas A. Progress and recent trends in biofuels. Prog. Energ. Combust. 33: 1–18; 2007. doi:10.1016/j.pecs.2006.06.001.Google Scholar
  59. Demirbas A. Production of biodiesel from tall oil. Energ. Source Part A 30: 1896–1902; 2008.Google Scholar
  60. Demirbas A.; Dincer K. Sustainable green diesel: a futuristic view. Energ. Source Part A 30: 1233–1241; 2008.Google Scholar
  61. DeOliveira E.; Quirino R. L.; Suarez P. A. Z.; Prado A. G. S. Heats of combustion of biofuels obtained by pyrolysis and by transesterification and of biofuel/diesel blends. Thermochim. Acta 450: 87–90; 2006. doi:10.1016/j.tca.2006.08.005.Google Scholar
  62. Dias J. M.; Alvim-Ferraz M. C. M.; Almeida M. F. Comparison of the performance of different homogenous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87: 3572–3578; 2008. doi:10.1016/j.fuel.2008.06.014.Google Scholar
  63. Dimitrakis W. J. The importance of lubricity. Hydrocarb. Eng. 8: 37–39; 2003.Google Scholar
  64. Doell R.; Konar S. K.; Boocock D. G. B. Kinetic parameters of a homogenous transmethylation of soybean oil. J. Am. Oil Chem. Soc. 85: 271–276; 2008. doi:10.1007/s11746-007-1168-8.Google Scholar
  65. Domingos A. K.; Saad E. B.; Wilhelm H. M.; Ramos L. P. Optimization of the ethanolysis of Raphanus sativas (L. var.) crude oil applying the response surface methodology. Bioresource. Technol. 99: 1837–1845; 2008. doi:10.1016/j.biortech.2007.03.063.Google Scholar
  66. Dorado M. P.; Ballesteros E.; Lopez F. J.; Mittelbach M. Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energ. Fuel 18: 77–83; 2004. doi:10.1021/ef0340110.Google Scholar
  67. dos Santos I. C. F.; de Carvalho S. H. V.; Solleti J. I.; Ferreira de Le Salles W.; Teixeira de Silva de La Salles K.; Meneghetti S. M. P. Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresource. Technol. 99: 6545–6549; 2008. doi:10.1016/j.biortech.2007.11.048.Google Scholar
  68. Drown D. C.; Harper K.; Frame E. Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc. 78: 679–584; 2001. doi:10.1007/s11746-001-0307-y.Google Scholar
  69. Dunn R. O. Alternative jet fuels from vegetable oils. Trans. ASAE 44: 1751–1757; 2001.Google Scholar
  70. Dunn R. O. Oxidative stability of soybean oil fatty acid FAME by oil stability index (OSI). J. Am. Oil Chem. Soc. 82: 381–387; 2005a. doi:10.1007/s11746-005-1081-6.Google Scholar
  71. Dunn R. O. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process. Technol. 86: 1071–1085; 2005b. doi:10.1016/j.fuproc.2004.11.003.Google Scholar
  72. Dunn R. O.; Bagby M. O. Low-temperature properties of triglyceride-based diesel fuels: transesterified FAME and petroleum middle distillate/ester blends. J. Am. Oil Chem. Soc. 72: 895–904; 1995. doi:10.1007/BF02542067.Google Scholar
  73. Dunn R. O.; Shockley M. W.; Bagby M. O. Improving the low-temperature properties of alternative diesel fuels: vegetable oil-derived FAME. J. Am. Oil Chem. Soc. 73: 1719–1728; 1996. doi:10.1007/BF02517978.Google Scholar
  74. Dunn, R. O.; Shcokley, M. W.; Bagby, M. O. Winterized FAME from soybean oil: an alternative diesel fuel with improved low-temperature properties. SAE Tech Pap Ser 1997-01-971682; 1997.Google Scholar
  75. Eathington S. R.; Crosbie T. M.; Edwards M. D.; Reiter R. S.; Bull J. K. Molecular markers in a commercial breeding program. Crop. Sci. 47S3: S154–S163; 2007. doi:10.2135/cropsci2007.04.0015IPBS.Google Scholar
  76. El-Mashad H. M.; Zhang R.; Avena-Bustillos R. J. A two-step process for biodiesel production from salmon oil. Biosyst. Eng. 99: 220–227; 2008. doi:10.1016/j.biosystemseng.2007.09.029.Google Scholar
  77. Elleuch M.; Besbes S.; Roiseux O.; Blecker C.; Attia H. Quality characteristics of sesame seeds and by-products. Food Chem. 103: 641–650; 2007. doi:10.1016/j.foodchem.2006.09.008.Google Scholar
  78. Encinar J. M.; Gonzalez J. F.; Rodriguez J. J.; Tejedor A. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energ. Fuel 16: 443–450; 2002. doi:10.1021/ef010174h.Google Scholar
  79. Encinar J. M.; Gonzalez J. F.; Rodriguez-Reinares A. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process. Technol. 88: 513–522; 2007. doi:10.1016/j.fuproc.2007.01.002.Google Scholar
  80. Environmental Protection Agency (EPA) A comprehensive analysis of biodiesel impacts on exhaust emissions. Draft Technical Report EPA420-P-02-00. National Service Center for Environmental Publications, Cincinnati, OH; 2002.Google Scholar
  81. Erhan S. Z. Industrial uses of vegetable oils. AOCS, Champaign; 2005.Google Scholar
  82. Feng J.; Fu H.; Wang J.; Li R.; Chen H.; Li X. Hydrogenolysis of glycerol to glycols over ruthenium catalysts: effect of support and catalyst reduction temperature. Catal. Com. 9: 1458–1464; 2008. doi:10.1016/j.catcom.2007.12.011.Google Scholar
  83. Fernandezalvarez P. F.; Vila J.; Garrido-Fernandez J.; Grifoll M.; Lema J. M. Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. J. Hazard. Mater. B 137: 1523–1531; 2006. doi:10.1016/j.jhazmat.2006.04.035.Google Scholar
  84. Fernando S.; Hall C.; Jha S. NO x reduction from biodiesel fuels. Energy Fuels 20: 376–382; 2006. doi:10.1021/ef050202m.Google Scholar
  85. Fernando S.; Hanna M. Development of a novel biofuel blend using ethanol-biodiesel-diesel microemulsions: EB-diesel. Energ. Fuel 18: 1695–1703; 2004. doi:10.1021/ef049865e.Google Scholar
  86. Foglia T. A.; Nelson L. A.; Dunn R. O.; Marmer W. N. Low-temperature properties of alkyl esters of tallow and grease. J. Am. Oil Chem. Soc. 74: 951–955; 1997. doi:10.1007/s11746-997-0010-7.Google Scholar
  87. Frankel E. N. Lipid oxidation. 2nd ed. The Oily Press, Bridgewater; 2005.Google Scholar
  88. Freedman B.; Butterfield R. O.; Pryde E. H. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc. 63: 1375–1380; 1986. doi:10.1007/BF02679606.Google Scholar
  89. Freedman B.; Pryde E. H.; Mounts T. L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61: 1638–1643; 1984. doi:10.1007/BF02541649.Google Scholar
  90. Frohlich A.; Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 21: 25–31; 2005. doi:10.1016/j.indcrop.2003.12.004.Google Scholar
  91. Frohlich A.; Schober S. The influence of tocopherols on the oxidative stability of FAME. J. Am. Oil Chem. Soc. 84: 579–585; 2007. doi:10.1007/s11746-007-1075-z.Google Scholar
  92. Geller D. P.; Goodrum J. W. Effects of specific fatty acid FAME on diesel fuel lubricity. Fuel 83: 2351–2356; 2004. doi:10.1016/j.fuel.2004.06.004.Google Scholar
  93. Georgogianni K. G.; Kontominas M. G.; Pomonis P. J.; Avlontis D.; Gergis V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 89: 503–509; 2008. doi:10.1016/j.fuproc.2007.10.004.Google Scholar
  94. Gerpen J. Biodiesel processing and production. Fuel Process. Technol. 86: 1097–1107; 2005. doi:10.1016/j.fuproc.2004.11.005.Google Scholar
  95. Ghadge S. V.; Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass. Bioenerg. 28: 601–605; 2005. doi:10.1016/j.biombioe.2004.11.009.Google Scholar
  96. Ghadge S. V.; Raheman H. Process optimization for biodiesel production from mahua (Madhuca indica L.) oil using response surface methodology. Bioresource. Technol. 97: 379–384; 2006. doi:10.1016/j.biortech.2005.03.014.Google Scholar
  97. Glória Pereira M. G.; Mudge S. M. Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oil biodiesels. Chemosphere. 54: 297–304; 2004. doi:10.1016/S0045-6535(03)00665-9.PubMedGoogle Scholar
  98. Goodrum J. W.; Geller D. P. Influence of fatty acid FAME from hydroxylated vegetable oils on diesel fuel lubricity. Bioresource. Technol. 96: 851–855; 2005. doi:10.1016/j.biortech.2004.07.006.Google Scholar
  99. Graboski M. S.; McCormick R. L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energ. Combust. 24: 125–164; 1998. doi:10.1016/S0360-1285(97)00034-8.Google Scholar
  100. Gunstone F. D. The chemistry of oils and fats. sources, composition, properties and uses. CRC, Boca Raton: 23–33 pp; 2004.Google Scholar
  101. Gunstone F. D.; Harwood J. L. Occurrence and characterization of oils and fats. In: Gunstone F. D.; Harwood J. L.; Dijkstra A. J. (eds) The lipid handbook. 3rd ed. CRC, Boca Raton, pp 37–142; 2007.Google Scholar
  102. Haas M. J. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process. Technol. 86: 1087–1096; 2005. doi:10.1016/j.fuproc.2004.11.004.Google Scholar
  103. Haas M. J.; Michalski P. J.; Runyon S.; Nunez A.; Scott K. M. Production of FAME from acid oil, a byproduct of vegetable oil refining. J. Am. Oil Chem. Soc. 80: 97–102; 2003. doi:10.1007/s11746-003-0658-4.Google Scholar
  104. Haas M. J.; Scott K. M.; Alleman T. L.; McCormick R. L. Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock. Energ. Fuel 15: 1207–1212; 2001. doi:10.1021/ef010051x.Google Scholar
  105. Hamad B.; Lopes de Souza R. O.; Sapaly G.; Carneiro Rocha M. G.; Pries de Oliveira P. G.; Gonzalez W. A.; Andrade Sales E.; Essayem N. Transesterification of rapeseed oil with ethanol over heterogeneous heteropolyacids. Catal. Com. 10: 92–97; 2008. doi:10.1016/j.catcom.2008.07.040.Google Scholar
  106. Hancsok J.; Bubalik M.; Beck A.; Baladincz J. Development of multifunctional additives based on vegetable oils for high quality diesel and biodiesel. Chem. Eng. Res. Des. 86: 793–799; 2008. doi:10.1016/j.cherd.2008.03.011.Google Scholar
  107. Hashimoto N.; Ozawa Y.; Mori N.; Yuri I.; Hisamatsu T. Fundamental combustion characteristics of palm methyl ester (PME) as alternative fuel for gas turbines. Fuel 87: 3373–3378; 2008. doi:10.1016/j.fuel.2008.06.005.Google Scholar
  108. Hess M. A.; Haas M. J.; Foglia T. A. Attempts to reduce NO x exhaust emissions by using reformulated biodiesel. Fuel Process Technol. 88: 693–699; 2007. doi:10.1016/j.fuproc.2007.02.001.Google Scholar
  109. Hess M. A.; Haas M. J.; Foglia T. A.; Marmer W. M. The effect of antioxidant addition on NOx emissions from biodiesel. Energ. Fuel 19: 1749–1754; 2005. doi:10.1021/ef049682s.Google Scholar
  110. Heywood J. Internal combustion engine fundamentals. McGraw-Hill Press, New York: 572–577 pp; 1998.Google Scholar
  111. Hoed V.; Zyaykina N.; De Greyt W.; Maes J.; Verhe R.; Demeestere K. Identification and occurrence of steryl glucosides in palm and soy biodiesel. J. Am. Oil Chem. Soc. 85: 701–709; 2008. doi:10.1007/s11746-008-1263-5.Google Scholar
  112. Holman R. A.; Elmer O. C. The rates of oxidation of unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 24: 127–129; 1947. doi:10.1007/BF02643258.Google Scholar
  113. Holser R. A.; Harry-O’Kuru R. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel. Fuel 85: 2106–2110; 2006. doi:10.1016/j.fuel.2006.04.001.Google Scholar
  114. Hou C. T.; Shaw J. F. Biocatalysts and bioenergy. Wiley, Hoboken; 2008.Google Scholar
  115. Hu J.; Du Z.; Li C.; Min E. Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel 84: 1601–1606; 2005.Google Scholar
  116. Hu J.; Du Z.; Tang Z.; Min E. Study on the solvent power of a new green solvent: biodiesel. Ind. Eng. Chem. Res. 43: 7928–7931; 2004. doi:10.1021/ie0493816.Google Scholar
  117. Huber G. W.; Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Ang. Chem. Int. Ed. 46: 7184–7201; 2007. doi:10.1002/anie200604504.Google Scholar
  118. Hughes J. M.; Mushrush G. W.; Hardy D. R. Lubricity-enhancing properties of soy oil when used as a blending stock for middle distillate fuels. Ind. Eng. Chem. Res. 41: 1386–1388; 2002. doi:10.1021/ie010624t.Google Scholar
  119. International Grains Council Grain market trends in the stockfeed and biodiesel industries. Australian Grain 17: 30–31; 2008.Google Scholar
  120. Issariyakul T.; Kulkarmi M. G.; Dalai A. K.; Bakhshi N. N. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process. Technol. 88: 429–436; 2007. doi:10.1016/j.fuproc.2006.04.007.Google Scholar
  121. Jeong G. W.; Yang H. S.; Park D. H. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource. Technol. 100: 25–30; 2009. doi:10.1016/j.biortech.2008.05.011.Google Scholar
  122. Joshi, H. C.; Toler, J.; Moser, B. R.; Walker, T. Biodiesel from canola oil using a 1:1 mixture of methanol and ethanol. Eur J Lipid Sci Technol. 111: 464–473; 2009. doi:10.1002/ejlt.200800071.Google Scholar
  123. Joshi H. C.; Toler J.; Walker T. Optimization of cottonseed oil ethanolysis to produce biodiesel high in gossypol content. J. Am. Oil Chem. Soc. 85: 357–363; 2008. doi:10.1007/s11746-008-1200-7.Google Scholar
  124. Kalbande S. R.; More G. R.; Nadre R. G. Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator. Bioenerg. Res. 1: 170–178; 2008. doi:10.1007/s12155-008-9016-8.Google Scholar
  125. Karmee S. K.; Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource. Technol. 96: 1425–1429; 2005. doi:10.1016/j.biortech.2004.12.011.Google Scholar
  126. Kerschbaum S.; Rinke G.; Schubert K. Winterization of biodiesel by mirco process engineering. Fuel 87: 2590–2597; 2008. doi:10.1016/j.fuel.2008.01.023.Google Scholar
  127. Keskin A.; Guru M.; Altiparmak D. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresource. Technol. 99: 6434–6438; 2008. doi:10.1016/j.biortech.2007.11.051.Google Scholar
  128. Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 86: 1059–1070; 2005. doi:10.1016/j.fuproc.2004.11.002.Google Scholar
  129. Knothe G. Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc. 83: 823–833; 2006. doi:10.1007/s11746-006-5033-y.Google Scholar
  130. Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88: 669–677; 2007. doi:10.1016/j.fuproc.2007.01.005.Google Scholar
  131. Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energ. Fuel 22: 1358–1364; 2008. doi:10.1021/ef700639e.Google Scholar
  132. Knothe G.; Bagby M. O.; Ryan T. A. III Cetane numbers of fatty compounds: influence of compound structure and of various potential cetane improvers. SAE Tech. Pap. Ser. 971681: 127–132; 1997.Google Scholar
  133. Knothe G.; Dunn R. O. Dependence of oil stability index of fatty compounds on their structure and concentration in the presence of metals. J. Am. Oil Chem. Soc. 80: 1021–1025; 2003. doi:10.1007/s11746-003-0814-x.Google Scholar
  134. Knothe G.; Matheaus A. C.; Ryan T. W. III Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82: 971–975; 2003. doi:10.1016/S0016-2361(02)00382-4.Google Scholar
  135. Knothe G.; Sharp C. A.; Ryan T. W. III Exhaust emissions of biodiesel, petrodiesel, neat FAME, and alkanes in a new technology engine. Energ. Fuel 20: 403–408; 2006. doi:10.1021/ef0502711.Google Scholar
  136. Knothe G.; Steidley K. R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84: 1059–1065; 2005a. doi:10.1016/j.fuel.2005.01.016.Google Scholar
  137. Knothe G.; Steidley K. R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energ. Fuel 19: 1192–1200; 2005b. doi:10.1021/ef049684c.Google Scholar
  138. Knothe G.; Van Gerpen J.; Krahl J. The Biodiesel Handbook. AOCS, Urbana; 2005.Google Scholar
  139. Kocak M. S.; Ileri E.; Utlu Z. Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energ. Fuel 21: 3622–3626; 2007. doi:10.1021/ef0600558.Google Scholar
  140. Korres D. M.; Karonis D.; Lois E.; Linck M. B.; Gupta A. K. Aviation fuel JP-5 and biodiesel on a diesel engine. Fuel 87: 70–78; 2008. doi:10.1016/j.fuel.2007.04.004.Google Scholar
  141. Korus, R. A.; Hoffman, D. S.; Bam, H.; Peterson, C. L.; Brown, D. C. Transesterification process to manufacture ethyl ester of rape oil, First Biomass Conference of the Americas. Burlington, VT, vol 2: 815–822; 1993.Google Scholar
  142. Kotrba R. Transition period. Biodiesel. Mag. 512: 52–57; 2008.Google Scholar
  143. Kram J. W. Gallons of megawatts. Biodiesel. Mag. 55: 76–80; 2008a.Google Scholar
  144. Kram J. W. Power without the burn. Biodiesel. Mag. 53: 73–77; 2008b.Google Scholar
  145. Kucek K. T.; Aparecida M.; Cesar-Oliveira F.; Wilhelm H. M.; Ramos L. P. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. J. Am. Oil Chem. Soc. 84: 385–392; 2007. doi:10.1007/s11746-007-1048-2.Google Scholar
  146. Kulkarni M. G.; Dalai A. K.; Bakhshi N. N. Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresource. Technol. 98: 2027–2033; 2007. doi:10.1016/j.biortech.2006.08.025.Google Scholar
  147. Kumari V.; Shah S.; Gupta M. N. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energ. Fuel 21: 368–372; 2007. doi:10.1021/ef0602168.Google Scholar
  148. Kumartiwari A. K.; Kumar A.; Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass. Bioenerg. 31: 569–575; 2007. doi:10.1016/j.biombioe.2007.03.003.Google Scholar
  149. Kusdiana D.; Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol. 91: 289–295; 2004. doi:10.1016/S0960-8524(03)00201-3.Google Scholar
  150. Lang X.; Dalai A. K.; Bakkshi N. N.; Reaney M. J.; Hertz P. B. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technol. 80: 53–62; 2001. doi:10.1016/S0960-8524(01)00051-7.Google Scholar
  151. Lapuerta M.; Herreros J. M.; Lyons L. L.; Garcia-Contreras R.; Briceno Y. Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 87: 3161–3169; 2008. doi:10.1016/j.fuel.2008.05.013.Google Scholar
  152. Lebedevas S.; Vaicekauskas A. Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: quality, motor properties, and emissions of harmful components. Energ. Fuel 20: 2274–2280; 2006. doi:10.1021/ef060145c.Google Scholar
  153. Lee I.; Johnson L. A.; Hammond E. G. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. Am. Oil Chem. Soc. 72: 1155–1160; 1995. doi:10.1007/BF02540982.Google Scholar
  154. Lee, I.; Mayfield, J. L.; Pfalzgraf, L. M.; Solheim, L.; Bloomer, S. Processing and producing biodiesel and biodiesel produced there from. US Pat Appl 20070151146, filed 12/21/2006; 2006.Google Scholar
  155. Lee I.; Pfalzgraf L. M.; Poppe G. B.; Powers E.; Haines T. The role of sterol glucosides on filter plugging. Biodiesel. Mag. 4: 105–112; 2007.Google Scholar
  156. Lee K. T.; Foglia T. A.; Chang K. S. Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem. Soc. 79: 191–195; 2002. doi:10.1007/s11746-002-0457-y.Google Scholar
  157. Leung D. Y. C.; Guo Y. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol. 87: 883–890; 2006. doi:10.1016/j.fuproc.2006.06.003.Google Scholar
  158. Li D.; Zhen H.; Xingcai L.; Wu-gao Z.; Jiang-guang Y. Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines. Renew Energ. 30: 967–976; 2005. doi:10.1016/j.renene.2004.07.010.Google Scholar
  159. Li Q.; Du W.; Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biot. 80: 749–756; 2008. doi:10.1007/s00253-008-1625-9.Google Scholar
  160. Liang Y. C.; May C. Y.; Foon C. S.; Ngan M. A.; Hock C. C.; Basiron Y. The effect of natural and synthetic antioxidants on the oxidative stability of palm biodiesel. Fuel 85: 867–870; 2006. doi:10.1016/j.fuel.2005.09.003.Google Scholar
  161. Lima J. R. O.; Silva R. B.; Moura E. M.; Moura C. V. R. Biodiesel of tucum oil, synthesized by methanolic and ethanolic routes. Fuel 87: 1718–1723; 2008. doi:10.1016/j.fuel.2007.09.007.Google Scholar
  162. Lin Y. C.; Tsai C. H.; Yang C. R.; Jim Wu C. H.; Wu T. Y.; Chang-Chien G. P. Effects on aerosol size distribution of polycyclic aromatic hydrocarbons from the heavy-duty diesel generator fueled with feedstock palm-biodiesel blends. Atmos. Environ. 42: 6679–6688; 2008. doi:10.1016/j.atmosenv.2008.04.018.Google Scholar
  163. Liu X.; Piao X.; Wang Y.; Zhu S. Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energ. Fuel 22: 1313–1317; 2008. doi:10.1021/ef700518h.Google Scholar
  164. Loh S. K.; Chew S. M.; Choo Y. M. Oxidative stability and storage behavior of fatty acid FAME derived from used palm oil. J. Am. Oil Chem. Soc. 83: 947–952; 2006. doi:10.1007/s11746-006-5051-9.Google Scholar
  165. Lotero E.; Liu Y.; Lopez D. E.; Suwannakarn K.; Bruce D. A.; Goodwin J. G. Jr Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44: 5353–5363; 2005. doi:10.1021/ie049157g.Google Scholar
  166. Mahajan S.; Konar S. K.; Boocock D. G. B. Standard biodiesel from soybean oil by a single chemical reaction. J. Am. Oil Chem. Soc. 83: 641–644; 2006. doi:10.1007/s11746-006-1251-6.Google Scholar
  167. Mahajan S.; Konar S. K.; Boocock D. G. B. Variables affecting the production of standard biodiesel. J. Am. Oil Chem. Soc. 84: 189–195; 2007. doi:10.1007/s11746-006-1023-3.Google Scholar
  168. Mao V.; Konar S. K.; Boocock D. G. B. The pseudo-single-phase, base catalyzed transmethylation of soybean oil. J. Am. Oil Chem. Soc. 81: 803–808; 2004. doi:10.1007/s11746-004-0982-8.Google Scholar
  169. Marchetti J. M.; Miguel V. U.; Errazu A. F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 11: 1300–1311; 2007. doi:10.1016/j.rser.2005.08.006.Google Scholar
  170. Mariod A.; Klupsch S.; Hussein H.; Ondruschka B. Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energ. Fuel 20: 2249–2252; 2006. doi:10.1021/ef060039a.Google Scholar
  171. Mbaraka I. K.; Radu D. R.; Lin V. S. Y.; Shanks B. H. Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J. Catal. 219: 329–336; 2003. doi:10.1016/S0021-9517(03)00193-3.Google Scholar
  172. McCormick, R. L., Alvarez, J. R., Graboski, M. S. 2003 NREL Final Report. SR-510-31465.Google Scholar
  173. McCormick R. L.; Graboski M. S.; Alleman T. L.; Herring A. M. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35: 1742–1747; 2001. doi:10.1021/es001636t.PubMedGoogle Scholar
  174. McGeehan, J. A. Diesel engines have a future and that future is clean. SAE Tech Pap Ser 2004-01-1956; 2004.Google Scholar
  175. Meher L. C.; Dharmagadda V. S. S.; Naik S. N. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource. Technol. 97: 1392–1397; 2006b. doi:10.1016/j.biortech.2005.07.003.Google Scholar
  176. Meher L. C.; Sagar D. V.; Naik S. N. Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Engerg. Rev. 10: 248–268; 2006a. doi:10.1016/j.rser.2004.09.002.Google Scholar
  177. Meneghetti S. M. P.; Meneghetti M. R.; Serra T. M.; Barbosa D. C.; Wolf C. R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energ. Fuel 21: 3746–3747; 2007. doi:10.1021/ef070039q.Google Scholar
  178. Meneghetti S. M. P.; Meneghetti M. R.; Wolf C. R.; Silva E. C.; Lima G. E. S.; de Lira Silva L.; Serra T. M.; Cauduro F.; de Oliveira L. G. Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energ. Fuel 20: 2262–2265; 2006. doi:10.1021/ef060118m.Google Scholar
  179. Meng X.; Chen G.; Wang Y. Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol. 89: 851–857; 2008. doi:10.1016/j.fuproc.2008.02.006.Google Scholar
  180. Meng X.; Yang Y.; Xu X.; Zhang L.; Nie Q.; Xian M. Biodiesel production from oleaginous microorganisms. Renew. Energ. 34: 1–5; 2009. doi:10.1016/j.renene.2008.04.014.Google Scholar
  181. Miao X.; Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource. Technol. 97: 841–846; 2006. doi:10.1016/j.biortech.2005.04.008.Google Scholar
  182. Miller J. A.; Bowman C. T. Mechanisms and modeling of nitrogen chemistry in combustion. Prog. Energ. Combust. 15: 287–338; 1989. doi:10.1016/0360-1285(89)90017-8.Google Scholar
  183. Miller N. J.; Mudge S. M. The effect of biodiesel on the rate of removal and weathering characteristics of crude oil within artificial sand columns. Spill. Sci. Technol. B 4: 17–33; 1997. doi:10.1016/S1353-2561(97)00030-3.Google Scholar
  184. Mittelbach M.; Gangl S. Long storage stability of biodiesel made from rapeseed and used frying oil. J. Am. Oil Chem. Soc. 78: 573–577; 2001. doi:10.1007/s11746-001-0306-z.Google Scholar
  185. Mittelbach M.; Remschmidt C. Biodiesel - a comprehensive handbook. Martin Mittelbach, Graz; 2004.Google Scholar
  186. Mittelbach M.; Schober S. The influence of antioxidants on the oxidation stability of biodiesel. J. Am. Oil Chem. Soc. 80: 817–823; 2003. doi:10.1007/s11746-003-0778-x.Google Scholar
  187. Miyashita K.; Takagi T. Study on the oxidative rate and prooxidant activity of free fatty acids. J. Am. Oil Chem. Soc. 63: 1380–1384; 1986. doi:10.1007/BF02679607.Google Scholar
  188. Mohibbeazam M. M.; Waris A.; Nahar N. M. Prospects and potential of fatty acid FAME of some non-traditional seed oils for use as biodiesel in India. Biomass. Bioenerg. 29: 293–302; 2005. doi:10.1016/j.biombioe.2005.05.001.Google Scholar
  189. Mondala A.; Liang K.; Toghiani H.; Hernandez R.; French T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource. Technol. 100: 1203–1210; 2009. doi:10.1016/j.biortech.2008.08.020.Google Scholar
  190. Monteiro M. R.; Ambrozin A. R. P.; Liao L. M.; Ferreira A. G. Critical review on analytical methods for biodiesel characterization. Talanta 77: 593–605; 2008. doi:10.1016/j.talanta.2008.07.001.Google Scholar
  191. Moreau R. A.; Scott K. M.; Haas M. J. The identification and quantification of steryl glucosides in precipitates from commercial biodiesel. J. Am. Oil Chem. Soc. 85: 761–770; 2008. doi:10.1007/s11746-008-1264-4.Google Scholar
  192. Moreira A. B. R.; Perez V. H.; Zanin G. M.; de Castro H. F. Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on silica-PVA composite. Energ. Fuel 21: 3689–3694; 2007. doi:10.1021/ef700399b.Google Scholar
  193. Moser B. R. Influence of blending canola, palm, soybean, and sunflower oil FAME on fuel properties of biodiesel. Energ. Fuel 22: 4301–4306; 2008a. doi:10.1021/ef800588x.Google Scholar
  194. Moser B. R. Efficacy of myricetin as an antioxidant additive in FAME of soybean oil. Eur. J. Lipid Sci. Technol. 110: 1167–1174; 2008b. doi:10.1002/ejlt.200800145.Google Scholar
  195. Moser B. R. Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. J. Am. Oil Chem. Soc. 86: 699–706; 2009a. doi:10.1007/s11746-009-1376-5.Google Scholar
  196. Moser B. R.; Williams A.; Haas M. J.; McCormick R. L. Exhaust emissions and fuel properties of partially hydrogenerated soybean oil FAME blended with ultra low sulfur diesel fuel. Fuel Process. Technol. 90: 1122–1128; 2009b. doi:10.1016/j.fuproc.2009.05.004.Google Scholar
  197. Moser B. R.; Cermak S. C.; Isbell T. A. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultra low sulfur diesel fuel. Energ. Fuel 22: 1349–1352; 2008. doi:10.1021/ef700628r.Google Scholar
  198. Moser B. R.; Erhan S. Z. Synthesis and evaluation of a series of α-hydroxy ethers derived from isopropyl oleate. J. Am. Oil Chem. Soc. 83: 959–963; 2006. doi:10.1007/s11746-006-5053-7.Google Scholar
  199. Moser B. R.; Erhan S. Z. Preparation and evaluation of a series of α-hydroxy ethers from 9,10-epoxystearates. Eur. J. Lipid Sci. Technol. 109: 206–213; 2007. doi:10.1002/ejlt.200600257.Google Scholar
  200. Moser B. R.; Erhan S. Z. Branched chain derivatives of alkyl oleates: tribological, rheological, oxidation, and low temperature properties. Fuel 87: 2253–2257; 2008. doi:10.1016/j.fuel.2008.01.005.Google Scholar
  201. Moser B. R.; Shah S. N.; Winkler-Moser J. K.; Vaughn S. F.; Evangelista R. L. Composition and physical properties of cress (Lepidium sativum L.) and field penncyress (Thlaspi arvense L.) oils. Ind. Crops Prod. 30: 199–205; 2009. doi:10.1016/j.indcrop.2009.03.007.Google Scholar
  202. Moser B. R.; Sharma B. K.; Doll K. M.; Erhan S. Z. Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability. J. Am. Oil Chem. Soc. 84: 675–680; 2007. doi:10.1007/s11746-007-1083-z.Google Scholar
  203. Mudge S. M.; Pereira G. Stimulating the biodegradation of crude oil with biodiesel. Preliminary results. Spill. Sci. Technol. B 5: 353–355; 1999. doi:10.1016/S1353-2561(99)00075-4.Google Scholar
  204. Mushrush G.; Beal E. J.; Spencer G.; Wynne J. H.; Lloyd C. L.; Hughes J. M.; Walls C. L.; Hardy D. R. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil. J. Environ. Sci. Heal A 36: 613–622; 2001. doi:10.1081/ESE-100103749.Google Scholar
  205. Mushrush G. W.; Wynne J. H.; Hughes J. M.; Beal E. J.; Lloyd C. T. Soybean-derived fuel liquids from different sources as blending stocks for middle distillate ground transportation fuels. Ind. Eng. Chem. Res. 42: 2387–2389; 2003. doi:10.1021/ie021052v.Google Scholar
  206. Mushrush G. W.; Wynne J. H.; Willauer H. D.; Lloyd C. T.; Hughes J. M.; Beal E. J. Recycled soybean cooking oils as blending stocks for diesel fuels. Ind. Eng. Chem. Res. 43: 4944–4946; 2004. doi:10.1021/ie030883d.Google Scholar
  207. Nag A. Biofuels refining and performance. McGraw Hill, New York; 2008.Google Scholar
  208. Naik M.; Meher L. C.; Naik S. N.; Das L. M. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass. Bioenerg. 32: 354–357; 2008. doi:10.1016/j.biombioe.2007.10.006.Google Scholar
  209. Narasimharao K.; Lee A.; Wilson K. Catalysts in production of biodiesel: a review. J. Biobased. Mat. Bioenerg. 1: 19–30; 2007. doi:10.1166/jbmb.2007.002.Google Scholar
  210. Nebel B. A.; Mittelbach M. Biodiesel from extracted fat out of meat and bone meal. Eur. J. Lipid Sci. Technol. 108: 398–403; 2006. doi:10.1002/ejlt.200500329.Google Scholar
  211. Newhall, H. K.; Shahed, S. M. Kinetics of nitric oxide formation in high-pressure flames. Proceedings of the Thirteenth International Symposium on Combustion:381–390, The Combustion Institute; 1971.Google Scholar
  212. Ngo H. L.; Zafiropoulos N. A.; Foglia T. A.; Samulski E. T.; Lin W. Efficient two-step synthesis of biodiesel from greases. Energ. Fuel 22: 626–634; 2008. doi:10.1021/ef700343b.Google Scholar
  213. Nimcevic D.; Puntigam R.; Worgetter M.; Gapes R. Preparation of rapeseed oil esters of lower aliphatic alcohols. J. Am. Oil Chem. Soc. 77: 275–280; 2000. doi:10.1007/s11746-000-0045-1.Google Scholar
  214. Nine R. D.; Clark N. N.; Mace B. E.; Morrison R. W.; Lowe P. C.; Remcho V. T.; McLaughlin L. W. Use of soy-derived fuel for environmental impact reduction in marine engine applications. Trans. ASAE 43: 1383–1391; 2000.Google Scholar
  215. Noureddini H.; Bandlamudi S. R. P.; Guthrie E. A. A novel method for the production of biodiesel from the whole stillage-extracted corn oil. J. Am. Oil Chem. Soc. 86: 83–91; 2009. doi:10.1007/s11746-008-1318-7.Google Scholar
  216. Ozsezen A. N.; Canakci M.; Sayin C. Effects of biodiesel from using frying palm oil on the exhaust emissions of an indirect injection (IDI) diesel engine. Energ. Fuel 22: 2796–2804; 2008. doi:10.1021/ef800174p.Google Scholar
  217. Padua M. V. Modifying vegetable oils for industrial lubricant applications. Fuel Lube Int. 14: 34–35; 2008.Google Scholar
  218. Palada, M. C.; Changl, L. C. Suggested cultural practices for Moringa. International Cooperators‐ Guide AVRDC. AVRDC pub # 03-545:1-5; 2003.Google Scholar
  219. Park J. Y.; Kim D. K.; Lee J. P.; Park S. C.; Kim Y. J.; Lee J. S. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource. Technol. 99: 1196–1203; 2008b. doi:10.1016/j.biortech.2007.02.017.Google Scholar
  220. Park J. Y.; Kim D. K.; Wang Z. M.; Lu P.; Park S. C.; Lee J. S. Production and characterization of biodiesel from tung oil. Appl. Biochem. Biotech. 148: 109–117; 2008a. doi:10.1007/s12010-007-8082-2.Google Scholar
  221. Paulson, N. D.; Ginder, R. G. The growth and direction of the biodiesel industry. Working Paper 07-WP 448, Center for Agricultural and Rural Development, Iowa State University; 2007.Google Scholar
  222. Peters R. A. Alcohol production and use. Inform 7: 502–504; 1996.Google Scholar
  223. Peterson C. L.; Reece D. L.; Thompson J. C.; Beck S. M.; Chase C. Ethyl ester of rapeseed used as a biodiesel fuel - a case study. Biomass. Bioenerg. 10: 331–336; 1996. doi:10.1016/0961-9534(95)00073-9.Google Scholar
  224. Pfalzgraf L.; Lee I.; Foster J.; Poppe G. Effect of minor components in soy biodiesel on cloud point and filterability. Inform 18Suppl 4: 17–21; 2007.Google Scholar
  225. Phan A. N.; Phan T. M. Biodiesel production from waste cooking oils. Fuel 87: 3490–3496; 2008. doi:10.1016/j.fuel.2008.07.008.Google Scholar
  226. Plessis L. M.; de Villiers J. B. M.; van der Walt W. H. Stability studies on methyl and ethyl fatty acid esters of sunflower oil. J. Am. Oil Chem. Soc. 62: 748–752; 1985. doi:10.1007/BF03028746.Google Scholar
  227. Poirier M. A.; Steere D. E.; Krogh J. A. Cetane improver compositions comprising nitrated fatty acid derivatives. US Patent 5: 454, 842; 1995.Google Scholar
  228. Predojevic Z. J. The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87: 3522–3528; 2008. doi:10.1016/j.fuel.2008.07.003.Google Scholar
  229. Qureshi N.; Saha B. C.; Cotta M. A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—Fed-batch fermentation. Biomass. Bioenerg. 32: 176–183; 2008b. doi:10.1016/j.biombioe.2007.07.005.Google Scholar
  230. Qureshi N.; Saha B. C.; Hector R. E.; Hughes S. R.; Cotta M. A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass. Bioenerg. 32: 168–175; 2008a. doi:10.1016/j.biombioe.2007.07.004.Google Scholar
  231. Raccuia S. A.; Melilli M. G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop. Res. 101: 187–197; 2007. doi:10.1016/j.fcr.2006.11.006.Google Scholar
  232. Raheman H.; Phadatare A. G. Diesel engine emission and performance from blends of karanja methyl ester and diesel. Biomass. Bioenerg. 27: 393–397; 2004. doi:10.1016/j.biombioe.2004.03.002.Google Scholar
  233. Rahimi H.; Ghobadian B.; Yusaf T.; Najafi G.; Khatamifar M. Diesterol: an environmental-friendly IC engine fuel. Renew Energ. 34: 335–342; 2009. doi:10.1016/j.renene.2008.04.031.Google Scholar
  234. Ramadhas A. S.; Jayaraj S.; Muraleedharan C. Biodiesel production from high FFA rubber seed oil. Fuel 84: 335–340; 2005. doi:10.1016/j.fuel.2004.09.016.Google Scholar
  235. Ranganathan S. V.; Narasimhan L.; Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource. Technol. 99: 3975–3981; 2008. doi:10.1016/j.biortech.2007.04.060.Google Scholar
  236. Rashid U.; Anwar F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87: 265–273; 2008a. doi:10.1016/j.fuel.2007.05.003.Google Scholar
  237. Rashid U.; Anwar F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energ. Fuel 22: 1306–1312; 2008b. doi:10.1021/ef700548s.Google Scholar
  238. Rashid U.; Anwar F.; Moser B. R.; Ashraf S. Production of sunflower oil FAME by optimized alkali-catalyzed methanolysis. Biomass. Bioenerg. 32: 1202–1205; 2008b. doi:10.1016/j.biombioe.2008.03.001.Google Scholar
  239. Rashid U.; Anwar F.; Moser B. R.; Knothe G. Moringa oleifera oil: A possible source of biodiesel. Bioresource Technol. 99: 8175–8179; 2008a. doi:10.1016/j.biortech.2008.03.066.Google Scholar
  240. Reid E. E. Studies in esterification. IV. The interdependence of limits as exemplified in the transformation of esters. Am. Chem. J. 45: 479–516; 1911.Google Scholar
  241. Retka-Schill S. Walking a tightrope. Biodiesel. Mag. 53: 64–70; 2008.Google Scholar
  242. Ribeiro N. M.; Pinto A. C.; Quintella C. M.; de Rocha G. O.; Teixeira L. S. G.; Guarieiro L. L. N.; Rangel M. C.; Veloso M. C. C.; Rezende M. J. C.; da Cruz R. S.; de Oliveira A. M.; Torres E. A.; de Andrade J. B. The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energ. Fuel 21: 2433–2445; 2007. doi:10.1021/ef070060r.Google Scholar
  243. Rodrigues R. C.; Volpato G.; Wada K.; Ayub M. A. Z. Enzymatic synthesis of biodiesel from transesterification of vegetable oils and short chain alcohols. J. Am. Oil. Chem. Soc. 85: 925–930; 2008. doi:10.1007/s11746-008-1284-0.Google Scholar
  244. Rosa C.; Morandim M. B.; Ninow J. L.; Oliveira D.; Treichel H.; Vladimir Oliveira J. Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. J. Supercrit. Fluid 47: 49–53; 2008. doi:10.1016/j.supflu.2008.06.004.Google Scholar
  245. Sahoo P. K.; Das L. M.; Babu M. K. G.; Naik S. N. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86: 448–454; 2007. doi:10.1016/j.fuel.2006.07.025.Google Scholar
  246. Saka S.; Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80: 225–231; 2001. doi:10.1016/S0016-2361(00)00083-1.Google Scholar
  247. Salehpour S.; Dube M. A. Biodiesel: a green polymerization solvent. Green Chem. 10: 321–326; 2008. doi:10.1039/b715047d.Google Scholar
  248. Sarin R.; Sharma M.; Sinharay S.; Malhotra R. K. Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86: 1365–1371; 2007. doi:10.1016/j.fuel.2006.11.040.Google Scholar
  249. Sarma A. K.; Konwer D.; Bordoloi P. K. A Comprehensive analysis of fuel properties of biodiesel from Koroch seed oil. Energ. Fuel 19: 656–657; 2005. doi:10.1021/ef049754f.Google Scholar
  250. Satge de Caro P.; Mouloungui Z.; Vaitilingom G.; Berge J. C. Interest of combining an additive with diesel-ethanol blends for use in diesel engines. Fuel 80: 565–574; 2001. doi:10.1016/S0016-2361(00)00117-4.Google Scholar
  251. Saydut A.; Duz M. Z.; Kaya C.; Kafadar A. B.; Hamamci C. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technol. 99: 6656–6660; 2008. doi:10.1016/j.biortech.2007.11.063.Google Scholar
  252. Schinas P.; Karavalakis G.; Davaris C.; Anastopoulos G.; Karonis D.; Zannikos F.; Stournas S.; Lois F. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass. Bioenerg. 33: 44–49; 2009. doi:10.1016/j.biombioe.2008.04.008.Google Scholar
  253. Scholz V.; da Silva J. N. Prospects and risks of the use of castor oil as a fuel. Biomass. Bioenerg. 32: 95–100; 2008. doi:10.1016/j.biombioe.2007.08.004.Google Scholar
  254. Schwab A. W.; Bagby M. O.; Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 66: 1372–1378; 1987. doi:10.1016/0016-2361(87)90184-0.Google Scholar
  255. Sern C. H.; May C. Y.; Zakaria Z.; Daik R.; Foon C. S. The effect of polymers and surfactants on the pour point of palm oil FAME. Eur. J. Lipid Sci. Technol. 109: 440–444; 2007. doi:10.1002/ejlt.200600242.Google Scholar
  256. Sharma B. K.; Doll K. M.; Erhan S. Z. Oxidation, friction reducing, and low temperature properties of epoxy fatty acid FAME. Green Chem. 9: 469–474; 2007. doi:10.1039/b614100e.Google Scholar
  257. Sharma Y. C.; Singh B.; Upadhyay S. N. Advancements in development and characterization of biodiesel: a review. Fuel 87: 2355–2373; 2008. doi:10.1016/j.fuel.2008.01.014.Google Scholar
  258. Singh A.; Singh I. S. Chemical evaluation of mahua (Madhuca indica [M longifolia] seeds. Food Chem. 40: 221–228; 1991. doi:10.1016/0308-8146(91)90106-X.Google Scholar
  259. Sinha S.; Agarwal A. K.; Garg S. Biodiesel production from rice bran oil: transesterification process optimization and fuel characterization. Energ. Convers. Manage. 49: 1248–1257; 2008. doi:10.1016/j.enconman.2007.08.010.Google Scholar
  260. Song J.; Cheenkachorn K.; Want J.; Perez J.; Boehman A. L.; Young P. J.; Walker F. J. Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine. Energ. Fuel 16: 294–301; 2002. doi:10.1021/ef010167t.Google Scholar
  261. Soriano N. U.; Migo V. P.; Sato K.; Matsumura M. Crystallization behavior of neat biodiesel and biodiesel treated with ozonized vegetable oil. Eur. J. Lipid Sci. Technol. 107: 689–696; 2005. doi:10.1002/ejlt.200501162.Google Scholar
  262. Soriano N. U. Jr.; Migo V. P.; Sato K.; Matsumura M. Ozonized vegetable oil as pour point depressant for neat biodiesel. Fuel 85: 25–31; 2006. doi:10.1016/j.fuel.2005.06.006.Google Scholar
  263. Spear S. K.; Griffin S. T.; Granger K. S.; Huddleston J. G.; Rogers R. D. Renewable plant-based soybean oil FAME as alternatives to organic solvents. Green Chem. 9: 1008–1015; 2007. doi:10.1039/b702329d.Google Scholar
  264. Sridharan R.; Mathai I. M. Transesterification reactions. J. Sci. Ind. Res. 22: 178–187; 1974.Google Scholar
  265. Srivastava A.; Prasad R. Triglycerides-based diesel fuels. Renew. Sust. Energ. Rev. 4: 111–133; 2000. doi:10.1016/S1364-0321(99)00013-1.Google Scholar
  266. Srivastava P. K.; Verma M. Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87: 1673–1677; 2008. doi:10.1016/j.fuel.2007.08.018.Google Scholar
  267. Stavarache C. E.; Morris J.; Maeda Y.; Oyane I.; Vinatoru M. Syringa (Melia azedarach L.) berries oil: a potential source for biodiesel fuel. Revista de Chimie 59: 672–677; 2008.Google Scholar
  268. Stavarache C. E.; Vinatoru M.; Nishimura R.; Maeda Y. Conversion of vegetable oil to biodiesel using ultrasonic irradiation. Chem. Lett. 32: 716–717; 2003. doi:10.1246/cl.2003.716.Google Scholar
  269. Sun H.; Hu K.; Lou H.; Zheng X. Biodiesel production from transesterification of rapeseed oil using KF/Eu2O3 as a catalyst. Energ. Fuel 22: 2756–2760; 2008. doi:10.1021/ef700778r.Google Scholar
  270. Suppes G. J. Propylene glycol from glycerol. Ind. Bioprocess. 28: 3; 2006.Google Scholar
  271. Suppes G. J.; Dasari M. A. Synthesis and evaluation of alkyl nitrates from triglycerides as cetane improvers. Ind. Eng. Chem. 42: 5042–5053; 2003. doi:10.1021/ie030015g.Google Scholar
  272. Suppes G. J.; Goff M.; Burkhart M. L.; Bockwinkel K.; Mason M. H.; Botts J. B.; Heppert J. A. Multifunctional diesel fuel additives from triglycerides. Energ. Fuel 15: 151–157; 2001. doi:10.1021/ef000122c.Google Scholar
  273. Szybist J. P.; Boehman A. L.; Taylor J. D.; McCormick R. L. Evaluation of formulation strategies to eliminate the biodiesel NOx effect. Fuel Process Technol. 86: 1109–1126; 2005. doi:10.1016/j.fuproc.2004.11.006.Google Scholar
  274. Tang H.; Wang A.; Salley S. O.; Ng K. Y. S. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85: 373–382; 2008. doi:10.1007/s11746-008-1208-z.Google Scholar
  275. Thomson L. A. J.; Evans B. Species profiles for pacific island. Agroforestry. Terminalia Catappa 2.2: 1–20; 2006.Google Scholar
  276. United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis. Oilseeds: World Markets and Trade, Circular Series FOP 12-08, Table 03, pg. 5; 2008.Google Scholar
  277. Usta N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass. Bioenerg. 28: 77–86; 2005. doi:10.1016/j.biombioe.2004.06.004.Google Scholar
  278. Vasudevan P. T.; Briggs M. Biodiesel production - current state of the art and challenges. J. Ind. Microbiol. Biot. 35: 421–430; 2008. doi:10.1007/s10295-008-0312-2.Google Scholar
  279. Vaughn S. F.; Holser R. A. Evaluation of biodiesels from several oilseed sources as environmentally friendly contact herbicides. Ind. Crop. Prod. 26: 63–68; 2007. doi:10.1016/j.indcrop.2007.01.005.Google Scholar
  280. Veljkovic V. B.; Lakicevic S. H.; Stamenkovic O. S. Todorovic, ZB.; Lazic, ML Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85: 2671–2675; 2006. doi:10.1016/j.fuel.2006.04.015.Google Scholar
  281. Vicente G.; Martinez M.; Aracil J. Optimization of Brassica carinata oil methanolysis for biodiesel production. J. Am. Oil Chem. Soc. 82: 899–904; 2005. doi:10.1007/s11746-005-1162-6.Google Scholar
  282. Wang P. S.; Tat M. E.; Van Gerpen J. The production of fatty acid isopropyl esters and their use as a diesel engine fuel. J. Am. Oil Chem. Soc. 82: 845–849; 2005. doi:10.1007/s11746-005-1153-7.Google Scholar
  283. Wang Y.; Wu H.; Zong M. H. Improvement of biodiesel production by lipase TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technol. 99: 7232–7237; 2008. doi:10.1016/j.biortech.2007.12.062.Google Scholar
  284. Wehlmann J. Use of esterified rapeseed oil as plasticizer in plastics processing. Fett-Lipid 101: 249–256; 1999. doi:10.1002/(SICI)1521-4133(199907)101:7<249::AID-LIPI249>3.0.CO;2-I.Google Scholar
  285. Wildes S. Clean machines from beans. Chem. Innov. 5: 23; 2001.Google Scholar
  286. Wildes S. Methyl soyate: a new green alternative solvent. Chem. Heal. Saf. 9: 24–26; 2002. doi:10.1016/S1074-9098(02)00292-7.Google Scholar
  287. Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L. Effect of biodiesel blends on diesel particulate filter performance. SAE Tech Pap Ser 2006-01-3280; 2006.Google Scholar
  288. Willing A. Oleochemical esters—environmentally compatible raw materials for oils and lubricants from renewable resources. Fett-Lipid 101: 192–198; 1999. doi:10.1002/(SICI)1521-4133(199906)101:6<192::AID-LIPI192>3.0.CO;2-W.Google Scholar
  289. Wright I. Salmon by-products. Aqua Feeds. Formulation & Beyond 11: 10–12; 2004.Google Scholar
  290. Wu W. H.; Foglia T. A.; Marmer W. N.; Dunn R. O.; Goering C. E.; Briggs T. E. Low-temperature property and engine performance evaluation of ethyl and isopropyl esters of tallow and grease. J. Am. Oil Chem. Soc. 75: 1173–1177; 1998. doi:10.1007/s11746-998-0131-7.Google Scholar
  291. Wyatt V. T.; Hess M. A.; Dunn R. O.; Foglia T. A.; Haas M. J.; Marmer W. M. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. J. Am. Oil Chem. Soc. 82: 585–591; 2005. doi:10.1007/s11746-005-1113-2.Google Scholar
  292. Yang F-X.; Su Y-Q.; Li X-H.; Zhang Q.; Sun S-C. Studies on the preparation of biodiesel from Zanthoxylum bungeanum maxim seed oil. J. Agric. Food Chem. 56: 7891–7896; 2008. doi:10.1021/jf801364f.PubMedGoogle Scholar
  293. Yao L.; Hammond E. G. Isolation and melting properties of branched-chain esters from lanolin. J. Am. Oil Chem. Soc. 83: 547–552; 2006. doi:10.1007/s11746-006-1238-3.Google Scholar
  294. Yu L.; Lee L.; Hammond E. G.; Johnson L. A.; Van Gerpen J. H. The influence of trace components on the melting point of methyl soyate. J. Am. Oil Chem. Soc. 75: 1821–1824; 1998. doi:10.1007/s11746-998-0337-8.Google Scholar
  295. Yuan X.; Liu J.; Zeng G.; Shi J.; Tong J.; Huang G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew. Energ. 33: 1678–1684; 2008. doi:10.1016/j.renene.2007.09.007.Google Scholar
  296. Zappi M.; Hernandez R.; Sparks D.; Horne J.; Brough M.; Arora S. M.; Motsenbocker W. D. A review of the engineering aspects of the biodiesel industry. Mississippi Biomass Council, Jackson, MS: 71 pp; 2003.Google Scholar
  297. Zhang J.; Jiang L. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource. Technol. 99: 8995–8998; 2008. doi:10.1016/j.biortech.2008.05.004.Google Scholar
  298. Zhang Y.; Dube M. A.; McLean D. D.; Kates M. Biodiesel production from waste cooking oil via two-step catalyzed process. Energ. Convers. Manage. 48: 184–188; 2003. doi:10.1016/j.enconman.2006.04.016.Google Scholar
  299. Zhou W.; Boocock D. B. G. Phase behavior of the base-catalyzed transesterification of soybean oil. J. Am. Oil Chem. Soc. 83: 1041–1045; 2006a. doi:10.1007/s11746-006-5160-5.Google Scholar
  300. Zhou W.; Boocock D. B. G. Phase distribution of alcohol, glycerol, and catalyst in the transesterification of soybean oil. J. Am. Oil Chem. Soc. 83: 1047–1052; 2006b. doi:10.1007/s11746-006-5161-4.Google Scholar
  301. Zhou W.; Konar S. K.; Boocock D. G. B. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc. 80: 367–371; 2003. doi:10.1007/s11746-003-0705-1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.United States Department of Agriculture, Agricultural Research ServiceNational Center for Agricultural Utilization ResearchPeoriaUSA

Personalised recommendations