Online Advertising in Social Networks

  • Abraham Bagherjeiran
  • Rushi P. Bhatt
  • Rajesh Parekh
  • Vineet Chaoji
Chapter

Abstract

Online social networks offer opportunities to analyze user behavior and social connectivity and leverage resulting insights for effective online advertising. This chapter focuses on the role of social network information in online display advertising.

Keywords

Marketing Explosive Percolate Banner 

Notes

Acknowledgments

We thank Duncan Watts, Sharad Goel, Jignashu Parikh, Narayan Bhamidipati, and Sergei Matsuevich for numerous enlightening discussions and help with data.

References

  1. 1.
  2. 2.
    RuleQuest Research. Website. http://www.rulequest.com/see5-comparison.html
  3. 3.
  4. 4.
    Agarwal, D., Pregibon, D.: Enhancing communities of interest using bayesian stochastic blockmodels. In: Proc. 4th SIAM Int’l Conf. on Data Mining, pp. 291–299 (2004)Google Scholar
  5. 5.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD ’08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM, New York, NY, USA (2008)Google Scholar
  6. 6.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: Membership, growth, and evolution. In: KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM, New York, NY, USA (2006)Google Scholar
  7. 7.
    Bagherjeiran, A., Parekh, R.: Combining behavioral and social network data for online advertising. In: ICDMW ’08: Proceedings of the 2008 IEEE International Conference on Data Mining Workshops, pp. 837–846. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  8. 8.
    Barabási, A.L.: Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Plume Books, New York (2003)Google Scholar
  9. 9.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Barabási, A.L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)CrossRefGoogle Scholar
  11. 11.
    Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: SIGIR ’07: Proceeding of the 30th International SIGIR Conference, pp. 559–566. ACM, New York, NY, USA (2007)Google Scholar
  12. 12.
    Chen, Y., Pavlov, D., Canny, J.: Large-scale behavioral targeting. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 209–218. ACM, New York, USA (2009)Google Scholar
  13. 13.
    Chung, C., Koran, J., Lin, L.J., Yin, H.: Model for generating user profiles in a behavioral targeting system. U. S. Patent Application (11/394,374) (2006)Google Scholar
  14. 14.
    Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proc. 14th Conf. on Knowledge Discovery & Data Mining, pp. 160–168. ACM, New York, NY, USA (2008)Google Scholar
  15. 15.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD ’01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM, New York, NY, USA (2001)Google Scholar
  16. 16.
    Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189–1232 (1999)CrossRefGoogle Scholar
  17. 17.
    Gladwell, M.: The Tipping Point: How Little Things Can Make a Big Difference, 1st edn. Little Brown, Boston (2000)Google Scholar
  18. 18.
    Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology (83), 1420–1443 (1978)Google Scholar
  19. 19.
    Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over social networks. In: WWW ’08: Proceeding of the 17th International Conference on World Wide Web, pp. 189–198. ACM, New York, NY, USA (2008)Google Scholar
  20. 20.
    Hill, S., Provost, F., Volinsky, C.: Network-based marketing: Identifying likely adopters via consumer networks. Statistical Science 22(2), 256–275 (2006)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  22. 22.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD ’03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM, New York, NY, USA (2003)Google Scholar
  23. 23.
    Kempe, D., Kleinberg, J., Tardos, E.: Influential nodes in a diffusion model for social networks. In: ICALP (2005)Google Scholar
  24. 24.
    Lazarsfeld, P., Merton, R.K.: Friendship as a social process: A substantive and methodological analysis. In: M. Berger, T. Abel, C.H. Page (eds.) Freedom and Control in Modern Society, pp. 18–66. Van Nostrand, New York (1954)Google Scholar
  25. 25.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Transactions on the Web 1, (2007)Google Scholar
  26. 26.
    Mcpherson, M., Lovin, L.S., Cook, J.M.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27(1), 415–444 (2001)CrossRefGoogle Scholar
  27. 27.
    Pine, J.: Mass customizing products and services. Planning Review July–August, (1993)Google Scholar
  28. 28.
    Provost, F., Dalessandro, B., Hook, R., Zhang, X., Murray, A.: Audience selection for on-line brand advertising: Privacy-friendly social network targeting. In: KDD ’09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 707–716. ACM, New York, NY, USA (2009)Google Scholar
  29. 29.
    Richardson, M., Domingos, P.: The intelligent surfer: Probabilistic combination of link and content information in pageRank. In: Advances in Neural Information Processing Systems 14. MIT Press, Cambridge (2002)Google Scholar
  30. 30.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD ’02: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 51–70. ACM, New York, NY, USA (2002)Google Scholar
  31. 31.
    Schapire, R.E.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification. Berkeley, CA (2001)Google Scholar
  32. 32.
    Singla, P., Richardson, M.: Yes, there is a correlation: From social networks to personal behavior on the web. In: WWW ’08: Proceeding of the 17th International Conference on World Wide Web, pp. 655–664. ACM, New York, NY, USA (2008)Google Scholar
  33. 33.
    Walkeri, R.: The hidden (in plain sight) persuaders. The New York Times Magazine, 69–75 (Dec. 5, 2004)Google Scholar
  34. 34.
    Watts, D.J.: A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America 99(9), 5766–5771 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. Journal of Consumer Research 34(4), 441–458 (2007)CrossRefGoogle Scholar
  36. 36.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  37. 37.
    White, D.R., Kejzar, N., Tsallis, C., Farmer, J.D.: Generative model for feedback networks. Physical Review E 73 (2006)Google Scholar
  38. 38.
    Yahoo!: Messenger. http://messenger.yahoo.com
  39. 39.
    Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., Chen, Z.: How much can behavioral targeting help online advertising? In: WWW ’09: Proceedings of the 18th International Conference on World Wide Web, pp. 261–270. ACM, New York, NY, USA (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Abraham Bagherjeiran
  • Rushi P. Bhatt
  • Rajesh Parekh
    • 1
  • Vineet Chaoji
  1. 1.Yahoo! LabsSanta ClaraUSA

Personalised recommendations