Skip to main content

Control of the Mesenchymal-Derived Cell Phenotype by Ski and Meox2: A Putative Mechanism for Postdevelopmental Phenoconversion

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

The developing mesenchyme gives rise to a diverse host of important cell types, including fibroblasts, endothelial and smooth muscle cells. In postnatal tissues, stromal cells continue to differentiate into subtypes with specific functions, e.g., fibroblasts to myofibroblasts, but the molecular signals that govern their phenoconversion are incompletely understood. Herein, we provide a review of the function of c-Ski (Ski) and Meox2 transcription factors and provide a rationale to support our suggestion that these factors trigger the phenoconversion of “undifferentiated” parenchymal and stromal cells to variants with novel function. As phenoconversion events underlie both normal organ function and the pathogenesis of disease including cardiac fibrosis, we have developed a novel hypothesis to facilitate a clearer understanding of their underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 2002;99:12877–82.

    PubMed  CAS  Google Scholar 

  2. Kalluri R, Zeisberg E. Controlling angiogenesis in heart valves. Nat Med. 2006;12:1118–9.

    PubMed  CAS  Google Scholar 

  3. Cunnington RH, Wang B, Bathe KL, et al. Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast contractililty and phenotype. Am J Physiol. 2011;200:C176–86.

    Google Scholar 

  4. Santiago JJ, Dangerfield AL, Rattan SG, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010;239:1573–84.

    PubMed  CAS  Google Scholar 

  5. Drobic V, Cunnington RH, Bedosky KM, et al. Differential and combined effects of cardiotrophin-1 and TGF-beta on cardiac myofibroblast proliferation and contraction. Am J Physiol Heart Circ Physiol. 2007;293:H1053–64.

    PubMed  CAS  Google Scholar 

  6. Norman D. An exploration of two opposing theories of wound contraction. J Wound Care. 2004;13:138–40.

    PubMed  CAS  Google Scholar 

  7. Lijnen P, Petrov V, Fagard R. Transforming growth factor-beta 1-mediated collagen gel contraction by cardiac fibroblasts. J Renin Angiotensin Aldosterone Syst. 2003;4:113–8.

    PubMed  CAS  Google Scholar 

  8. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994;4:401–4.

    Google Scholar 

  9. Arany PR, Flanders KC, Kobayashi T, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proc Natl Acad Sci USA. 2006;103:9250–5.

    PubMed  CAS  Google Scholar 

  10. Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179:1311–23.

    PubMed  CAS  Google Scholar 

  11. Wang J, Chen H, Seth A, et al. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol. 2003;285:H1871–81.

    PubMed  CAS  Google Scholar 

  12. Hao J, Wang B, Jones SC, et al. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol. 2000;279:H3020–30.

    PubMed  CAS  Google Scholar 

  13. Wang B, Hao J, Jones SC, et al. Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol. 2002;282:H1685–96.

    PubMed  CAS  Google Scholar 

  14. Freed DH, Cunnington RH, Dangerfield AL, et al. Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res. 2005;65:782–92.

    PubMed  CAS  Google Scholar 

  15. Xu W, Angelis K, Danielpour D, et al. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci USA. 2000;97:5924–9.

    PubMed  CAS  Google Scholar 

  16. Kokura K, Kim H, Shinagawa T, et al. The Ski-binding protein C184M negatively regulates tumor growth factor-beta signaling by sequestering the Smad proteins in the cytoplasm. J Biol Chem. 2003;278:20133–9.

    PubMed  CAS  Google Scholar 

  17. Massague J, Hata A, Liu F. Tgf-beta signalling through the Smad pathway. Trends Cell Biol. 1997;7:187–92.

    CAS  Google Scholar 

  18. Wrana J, Pawson T. Signal transduction. Mad about SMADs. Nature. 1997;388:28–9.

    PubMed  CAS  Google Scholar 

  19. Nakao A, Roijer E, Imamura T, et al. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J Biol Chem. 1997;272:2896–900.

    PubMed  CAS  Google Scholar 

  20. Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996;383:691–6.

    PubMed  CAS  Google Scholar 

  21. Zhou S, Zawel L, Lengauer C, et al. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell. 1998;2:121–7.

    PubMed  CAS  Google Scholar 

  22. Chen YG, Hata A, Lo RS, et al. Determinants of specificity in TGF-beta signal transduction. Genes Dev. 1998;12:2144–52.

    PubMed  CAS  Google Scholar 

  23. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–40.

    PubMed  CAS  Google Scholar 

  24. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    PubMed  CAS  Google Scholar 

  25. Wrana JL. Regulation of Smad activity. Cell. 2000;100:189–92.

    PubMed  CAS  Google Scholar 

  26. Park SH. Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J Biochem Mol Biol. 2005;38:9–16.

    PubMed  Google Scholar 

  27. Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem. 2007;101:9–33.

    PubMed  CAS  Google Scholar 

  28. Zhang Y, Feng X, We R, et al. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996;383:168–72.

    PubMed  CAS  Google Scholar 

  29. Macias-Silva M, Abdollah S, Hoodless PA, et al. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996;87:1215–24.

    PubMed  CAS  Google Scholar 

  30. Dixon IMC, Wang B, Bedosky K, et al. Regulatory role of TGF-b in cardiac myofibroblast function and post-MI cardiac fibrosis: key role of Smad7 and c-Ski. In: Srivastava AKA-S, Madhu B, editors. Advances in biochemistry in health and disease (ABHD) – focus on signal transduction in cardiovascular system in health and disease, vol. 3. New York: Springer; 2008.

    Google Scholar 

  31. Wang B, Omar A, Angelovska T, et al. Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol Heart Circ Physiol. 2007;293:H1282–90.

    PubMed  CAS  Google Scholar 

  32. Cunnington RH, Nazari M, Dixon IMC. c-Ski, Smurf2 and Arkadia as regulators of TGF-b ­signaling: new targets for managing myofibroblast function and cardiac fibrosis. Can J Physiol Pharmacol. 2009;87:764–72.

    PubMed  CAS  Google Scholar 

  33. Li P, Wang D, Lucas J, et al. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res. 2008;102:185–92.

    PubMed  CAS  Google Scholar 

  34. Chen X, Weisberg E, Fridmacher V, et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature. 1997;389:85–9.

    PubMed  CAS  Google Scholar 

  35. Christian JL, Nakayama T. Can’t get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals. Bioessays. 1999;21:382–90.

    PubMed  CAS  Google Scholar 

  36. Chong PA, Lin H, Wrana JL, et al. An expanded WW domain recognition motif revealed by the interaction between Smad7 and the E3 ubiquitin ligase Smurf2. J Biol Chem. 2006;281:17069–75.

    PubMed  CAS  Google Scholar 

  37. Peterson DJ, Ju H, Hao J, et al. Expression of Gi-2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res. 1999;41:575–85.

    PubMed  CAS  Google Scholar 

  38. Lagna G, Hata A, Hemmati-Brivanlou A, et al. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996;383:832–6.

    PubMed  CAS  Google Scholar 

  39. Wrana JL. The secret life of Smad4. Cell. 2009;136:13–4.

    PubMed  CAS  Google Scholar 

  40. Dupont S, Mamidi A, Cordenonsi M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 2009;136:123–35.

    PubMed  CAS  Google Scholar 

  41. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.

    PubMed  CAS  Google Scholar 

  42. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–54.

    PubMed  CAS  Google Scholar 

  43. Ueki N, Hayman MJ. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J Biol Chem. 2003;278:32489–92.

    PubMed  CAS  Google Scholar 

  44. Luo K, Stroschein SL, Wang W, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999;13:2196–206.

    PubMed  CAS  Google Scholar 

  45. Luo K. Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev. 2004;14:65–70.

    PubMed  CAS  Google Scholar 

  46. Suzuki H, Yagi K, Kondo M, et al. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene. 2004;23:5068–76.

    PubMed  CAS  Google Scholar 

  47. Akiyoshi S, Inoue H, Hanai J, et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem. 1999;274:35269–77.

    PubMed  CAS  Google Scholar 

  48. Prunier C, Pessah M, Ferrand N, et al. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem. 2003;278:26249–57.

    PubMed  CAS  Google Scholar 

  49. Qiu P, Ritchie RP, Fu Z, et al. Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ Res. 2005;97:983–91.

    PubMed  CAS  Google Scholar 

  50. Qiu P, Feng XH, Li L. Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. J Mol Cell Cardiol. 2003;35:1407–20.

    PubMed  CAS  Google Scholar 

  51. Vindevoghel L, Kon A, Lechleider RJ, et al. Smad-dependent transcriptional activation of human type VII collagen gene (COL7A1) promoter by transforming growth factor-beta. J Biol Chem. 1998;273:13053–7.

    PubMed  CAS  Google Scholar 

  52. Vindevoghel L, Lechleider RJ, Kon A, et al. SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta. Proc Natl Acad Sci USA. 1998;95:14769–74.

    PubMed  CAS  Google Scholar 

  53. Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1:611–7.

    PubMed  CAS  Google Scholar 

  54. Chen S, Kulik M, Lechleider RJ. Smad proteins regulate transcriptional induction of the SM22alpha gene by TGF-beta. Nucleic Acids Res. 2003;31:1302–10.

    PubMed  CAS  Google Scholar 

  55. Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165–73.

    PubMed  CAS  Google Scholar 

  56. Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997;389(6651):622–6.

    PubMed  CAS  Google Scholar 

  57. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–5.

    PubMed  CAS  Google Scholar 

  58. Whitman M. Signal transduction. Feedback from inhibitory SMADs. Nature. 1997;389:549–51.

    PubMed  CAS  Google Scholar 

  59. Li Y, Turck CM, Teumer JK, et al. Unique sequence, ski, in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene. J Virol. 1986;57:1065–72.

    PubMed  CAS  Google Scholar 

  60. Ludolph DC, Neff AW, Parker MA, et al. Cloning and expression of the axolotl proto-oncogene ski. Biochim Biophys Acta. 1995;1260:102–4.

    PubMed  Google Scholar 

  61. Nomura N, Sasamoto S, Ishii S, et al. Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res. 1989;17:5489–500.

    PubMed  CAS  Google Scholar 

  62. Sleeman JP, Laskey RA. Xenopus c-ski contains a novel coiled-coil protein domain, and is maternally expressed during development. Oncogene. 1993;8:67–77.

    PubMed  CAS  Google Scholar 

  63. Reed JA, Bales E, Xu W, et al. Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res. 2001;61:8074–8.

    PubMed  CAS  Google Scholar 

  64. Stavnezer E, Barkas AE, Brennan LA, et al. Transforming Sloan-Kettering viruses generated from the cloned v-ski oncogene by in vitro and in vivo recombinations. J Virol. 1986;57:1073–83.

    PubMed  CAS  Google Scholar 

  65. Zhang H, Stavnezer E. Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem. 2009;284:2867–79.

    PubMed  CAS  Google Scholar 

  66. Sutrave P, Kelly AM, Hughes SH. Ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 1990;4:1462–72.

    PubMed  CAS  Google Scholar 

  67. Nicol R, Stavnezer E. Transcriptional repression by v-Ski and c-Ski mediated by a specific DNA binding site. J Biol Chem. 1998;273:3588–97.

    PubMed  CAS  Google Scholar 

  68. Nagase T, Mizuguchi G, Nomura N, et al. Requirement of protein co-factor for the DNA-binding function of the human ski proto-oncogene product. Nucleic Acids Res. 1990;18:337–43.

    PubMed  CAS  Google Scholar 

  69. Nomura T, Khan MM, Kaul SC, et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 1999;13:412–23.

    PubMed  CAS  Google Scholar 

  70. Sun Y, Liu X, Eaton EN, Lane WS, et al. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell. 1999;4:499–509.

    PubMed  CAS  Google Scholar 

  71. Ferrand N, Atfi A, Prunier C. The oncoprotein c-ski functions as a direct antagonist of the transforming growth factor-{beta} type I receptor. Cancer Res. 2010;70:8457–66.

    PubMed  CAS  Google Scholar 

  72. Dahl R, Kieslinger M, Beug H, et al. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci USA. 1998;95:11187–92.

    PubMed  CAS  Google Scholar 

  73. Kokura K, Kaul SC, Wadhwa R, et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 2001;276:34115–21.

    PubMed  CAS  Google Scholar 

  74. Tokitou F, Nomura T, Khan MM, et al. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem. 1999;274:4485–8.

    PubMed  CAS  Google Scholar 

  75. Tarapore P, Richmond C, Zheng G, et al. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res. 1997;25:3895–903.

    PubMed  CAS  Google Scholar 

  76. Ju H, Zhao S, Tappia PS, Panagia V, et al. Expression of Gqalpha and PLC-beta in scar and border tissue in heart failure due to myocardial infarction. Circulation. 1998;97:892–9.

    PubMed  CAS  Google Scholar 

  77. Caulfield JB, Borg TK. The collagen network of the heart. Lab Invest. 1979;40:364–72.

    PubMed  CAS  Google Scholar 

  78. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    PubMed  CAS  Google Scholar 

  79. Birchmeier C, Birchmeier W. Molecular aspects of mesenchymal-epithelial interactions. Annu Rev Cell Biol. 1993;9:511–40.

    PubMed  CAS  Google Scholar 

  80. Simon-Assmann P, Kedinger M, De Arcangelis A, et al. Extracellular matrix components in intestinal development. Experientia. 1995;51:883–900.

    PubMed  CAS  Google Scholar 

  81. Makino N, Hata T, Sugano M, et al. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type 1 receptor in rats. J Mol Cell Cardiol. 1996;28:507–17.

    PubMed  CAS  Google Scholar 

  82. Jalil JE, Doering CW, Janicki JS, et al. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res. 1989;64:1041–50.

    PubMed  CAS  Google Scholar 

  83. Thiedemann KU, Holubarsch C, Medugorac I, Jacob R. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol. 1983;78:140–55.

    PubMed  CAS  Google Scholar 

  84. Bartosova D, Chvapil M, Korecky B, et al. The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J Physiol (Lond). 1969;200:285–95.

    CAS  Google Scholar 

  85. Hao J, Ju H, Zhao S, Junaid A, et al. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol. 1999;31:667–78.

    PubMed  CAS  Google Scholar 

  86. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83:1849–65.

    PubMed  CAS  Google Scholar 

  87. Cleutjens JP, Blankesteijn WM, Daemen MJ, et al. The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res. 1999;44:232–41.

    PubMed  CAS  Google Scholar 

  88. Roberts AB, McCune BK, Sporn MB. TGF-beta: regulation of extracellular matrix. Kidney Int. 1992;41:557–9.

    PubMed  CAS  Google Scholar 

  89. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261:4337–45.

    PubMed  CAS  Google Scholar 

  90. Butt RP, Bishop JE. Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol. 1997;29:1141–51.

    PubMed  CAS  Google Scholar 

  91. Roberts AB, Heine UI, Flanders KC, et al. Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann NY Acad Sci. 1990;580:225–32.

    PubMed  CAS  Google Scholar 

  92. Weber KT. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol. 1997;17:467–91.

    PubMed  CAS  Google Scholar 

  93. Thompson NL, Bazoberry F, Speir EH, et al. Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors. 1988;1:91–9.

    PubMed  CAS  Google Scholar 

  94. Dixon IMC, Hao J, Reid NL, et al. Effect of chronic AT1 receptor blockade on cardiac smad overexpression in hereditary cardiomyopathic hamsters. Cardiovasc Res. 2000;46:286–97.

    PubMed  CAS  Google Scholar 

  95. Follonier Castella L, Gabbiani G, et al. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res. 2010;316:2390–401.

    PubMed  CAS  Google Scholar 

  96. Bhole AP, Flynn BP, Liles M, et al. Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos Transact A Math Phys Eng Sci. 2009;367:3339–62.

    PubMed  CAS  Google Scholar 

  97. Flynn BP, Bhole AP, Saeidi N, et al. Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS One. 2010;5:e12337.

    PubMed  Google Scholar 

  98. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341:1276–83.

    PubMed  CAS  Google Scholar 

  99. Stiles GL. Multifunctional G proteins. Searching for functions in the heart [editorial; comment]. Circulation. 1996;94:602–3.

    PubMed  CAS  Google Scholar 

  100. Sun Y. Local angiotensin II and myocardial fibrosis. In: Zanchetti A et al., editors. Hypertension and the heart. New York: Plenum; 1997. p. 55–61.

    Google Scholar 

  101. Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol Cell Physiol. 1999;277:C1–9.

    CAS  Google Scholar 

  102. Eghbali M, Czaja MJ, Zeydel M, et al. Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol. 1988;20:267–76.

    PubMed  CAS  Google Scholar 

  103. Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12:676–85.

    PubMed  CAS  Google Scholar 

  104. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    PubMed  CAS  Google Scholar 

  105. Sun Y, Cleutjens JP, Diaz-Arias AA, et al. Cardiac angiotensin converting enzyme and myocardial fibrosis in the heart. Cardiovasc Res. 1994;28:1423–32.

    PubMed  CAS  Google Scholar 

  106. Sun Y, Weber KT. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res. 1994;28:1623–8.

    PubMed  CAS  Google Scholar 

  107. Hildebrand A, Romaris M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 1994;302:527–34.

    PubMed  CAS  Google Scholar 

  108. Raizman JE, Komljenovic J, Chang R, et al. The participation of the Na+-Ca2+ exchanger in primary cardiac myofibroblast migration, contraction, and proliferation. J Cell Physiol. 2007;213:540–51.

    PubMed  CAS  Google Scholar 

  109. Dugina V, Fontao L, Chaponnier C, et al. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci. 2001;114:3285–96.

    PubMed  CAS  Google Scholar 

  110. Masur SK, Dewal HS, Dinh TT, et al. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci USA. 1996;93:4219–23.

    PubMed  CAS  Google Scholar 

  111. Evans RA, Tian YC, Steadman R, et al. TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of smad proteins. Exp Cell Res. 2003;282:90–100.

    PubMed  CAS  Google Scholar 

  112. Brand T, Schneider MD. Transforming growth factor-beta signal transduction. Circ Res. 1996;78:173–9.

    PubMed  CAS  Google Scholar 

  113. Brand T, Schneider MD. The TGF beta superfamily in myocardium: ligands, receptors, transduction, and function. J Mol Cell Cardiol. 1995;27:5–18.

    PubMed  CAS  Google Scholar 

  114. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–46.

    PubMed  CAS  Google Scholar 

  115. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem. 1994;269:14828–34.

    PubMed  CAS  Google Scholar 

  116. Sadoshima J, Izumo S. Molecular characterization of angiotensin II–induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993;73:413–23.

    PubMed  CAS  Google Scholar 

  117. Ohta K, Kim S, Hamaguchi A, et al. Role of angiotensin II in extracellular matrix and transforming growth factor-beta 1 expression in hypertensive rats. Eur J Pharmacol. 1994;269:115–9.

    PubMed  CAS  Google Scholar 

  118. Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol. 2000;32:187–95.

    PubMed  CAS  Google Scholar 

  119. Skopicki HA, Lyons GE, Schatteman G, et al. Embryonic expression of the Gax homeodomain protein in cardiac, smooth, and skeletal muscle. Circ Res. 1997;80:452–62.

    PubMed  CAS  Google Scholar 

  120. Wu Z, Guo H, Chow N, et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med. 2005;11:959–65.

    PubMed  CAS  Google Scholar 

  121. Smith RC, Branellec D, Gorski DH, et al. p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev. 1997;11:1674–89.

    PubMed  CAS  Google Scholar 

  122. Fisher SA, Siwik E, Branellec D, et al. Forced expression of the homeodomain protein Gax inhibits cardiomyocyte proliferation and perturbs heart morphogenesis. Development. 1997;124:4405–13.

    PubMed  CAS  Google Scholar 

  123. Witzenbichler B, Kureishi Y, Luo Z, et al. Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. J Clin Invest. 1999;104:1469–80.

    PubMed  CAS  Google Scholar 

  124. Valcourt U, Thuault S, Pardali K, et al. Functional role of Meox2 during the epithelial cytostatic response to TGF-beta. Mol Oncol. 2007;1:55–71.

    PubMed  CAS  Google Scholar 

  125. Chen Y, Leal AD, Patel S, et al. The homeobox gene GAX activates p21WAF1/CIP1 expression in vascular endothelial cells through direct interaction with upstream AT-rich sequences. J Biol Chem. 2007;282:507–17.

    PubMed  CAS  Google Scholar 

  126. Gorski DH, LePage DF, Patel CV, et al. Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in ­vascular smooth muscle cells. Mol Cell Biol. 1993;13:3722–33.

    PubMed  CAS  Google Scholar 

  127. Weir L, Chen D, Pastore C, et al. Expression of gax, a growth arrest homeobox gene, is rapidly down-regulated in the rat carotid artery during the proliferative response to balloon injury. J Biol Chem. 1995;270:5457–61.

    PubMed  CAS  Google Scholar 

  128. Markmann A, Rauterberg J, Vischer P, et al. Expression of transcription factors and matrix genes in response to serum stimulus in vascular smooth muscle cells. Eur J Cell Biol. 2003;82:119–29.

    PubMed  CAS  Google Scholar 

  129. Maillard L, Van Belle E, Smith RC, et al. Percutaneous delivery of the gax gene inhibits vessel stenosis in a rabbit model of balloon angioplasty. Cardiovasc Res. 1997;35:536–46.

    PubMed  CAS  Google Scholar 

  130. Maillard L, Van Belle E, Tio FO, et al. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther. 2000;7:1353–61.

    PubMed  CAS  Google Scholar 

  131. Perlman H, Luo Z, Krasinski K, et al. Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. Gene Ther. 1999;6:758–63.

    PubMed  CAS  Google Scholar 

  132. Liu P, Zhang C, Feng JB, et al. Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax. Arterioscler Thromb Vasc Biol. 2008;28:725–31.

    PubMed  Google Scholar 

  133. Ansieau S, Morel AP, Hinkal G, et al. Twisting an embryonic transcription factor into an oncoprotein. Oncogene. 2010;29:3173–84.

    PubMed  CAS  Google Scholar 

  134. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.

    PubMed  CAS  Google Scholar 

  135. Larsson O, Diebold D, Fan D, et al. Fibrotic myofibroblasts manifest genome-wide derangements of translational control. PLoS One. 2008;3:e3220.

    PubMed  Google Scholar 

  136. Chen Y, Banda M, Speyer CL, et al. Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol Cell Biol. 2010;30:3902–13.

    PubMed  CAS  Google Scholar 

  137. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–78.

    PubMed  CAS  Google Scholar 

  138. Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 2005;33:6566–78.

    PubMed  CAS  Google Scholar 

  139. Peterson DJ, Ju H, Jianming Hao PM, Chapman D, Dixon IMC. Expression of Gia2 and Gsa in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res. 1998;41:575–85.

    Google Scholar 

  140. Cleutjens JP, Verluyten MJ, Smits JF, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.

    PubMed  CAS  Google Scholar 

  141. van Krimpen C, Schoemaker RG, Cleutjens JP, et al. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol. 1991;86 Suppl 1:149–55.

    PubMed  Google Scholar 

  142. Robinson TF, Factor SM, Sonnenblick EH. The heart as a suction pump. Sci Am. 1986;254:84–91.

    PubMed  CAS  Google Scholar 

  143. Robinson TF, Cohen-Gould L, Factor SM. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest. 1983;49:482–98.

    PubMed  CAS  Google Scholar 

  144. Brown L. Cardiac extracellular matrix: a dynamic entity. Am J Physiol Heart Circ Physiol. 2005;289:H973–4.

    PubMed  CAS  Google Scholar 

  145. Bashey RI, Martinez Hernandez A, Jimenez SA. Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res. 1992;70:1006–17.

    PubMed  CAS  Google Scholar 

  146. Weber KT, Jalil JE, Janicki JS. Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens. 1989;2:931–40.

    PubMed  CAS  Google Scholar 

  147. Ju H, Zhao S, Davinder SJ, et al. Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovasc Res. 1997;35:223–32.

    PubMed  CAS  Google Scholar 

  148. Pelouch V, Dixon IM, Golfman L, et al. Role of extracellular matrix proteins in heart function. Mol Cell Biochem. 1993;129:101–20.

    PubMed  CAS  Google Scholar 

  149. Dixon IMC, Reid NL, Ju H. Angiotensin II and TGF-b in the development of cardiac fibrosis, myocyte hypertrophy, and heart failure. Heart Fail Rev. 1997;2:107–16.

    CAS  Google Scholar 

  150. Pelouch V, Dixon IM, Sethi R, et al. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem. 1993;129:121–31.

    PubMed  CAS  Google Scholar 

  151. Liu KZ, Jackson M, Sowa MG, et al. Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochim Biophys Acta. 1996;1315:73–7.

    Google Scholar 

  152. Dixon IMC, Ju H, Jassal DS, et al. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem. 1996;165:31–45.

    PubMed  CAS  Google Scholar 

  153. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96:4065–82.

    PubMed  CAS  Google Scholar 

  154. Dixon IMC, Ju H, Reid NL. The role of angiotensin II in post-translational regulation of fibrillar collagens in fibrosed and failing rat heart. In: Dhalla NS, Zahradka P, Dixon IMC, Beamish RE, editors. Angiotensin II receptor blockade: physiological and clinical implications. Boston: Kluwer Academic; 1998. p. 471–98.

    Google Scholar 

  155. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol. 1978;90:57–70.

    PubMed  CAS  Google Scholar 

  156. Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol. 1996;28:851–8.

    PubMed  CAS  Google Scholar 

  157. Jugdutt BI, Amy RW. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol. 1986;7:91–102.

    PubMed  CAS  Google Scholar 

  158. Willems IE, Havenith MG, De Mey JG, et al. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994;145:868–75.

    PubMed  CAS  Google Scholar 

  159. Holmes JW, Nunez JA, Covell JW. Functional implications of myocardial scar structure. Am J Physiol. 1997;272:H2123–30.

    PubMed  CAS  Google Scholar 

  160. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250:273–83.

    PubMed  CAS  Google Scholar 

  161. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.

    PubMed  CAS  Google Scholar 

  162. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75:487–517.

    PubMed  CAS  Google Scholar 

  163. Halayko AJ, Solway J. Molecular mechanisms of phenotypic plasticity in smooth muscle cells. J Appl Physiol. 2001;90:358–68.

    PubMed  CAS  Google Scholar 

  164. Hirota JA, Nguyen TT, Schaafsma D, et al. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther. 2009;22:370–8.

    PubMed  CAS  Google Scholar 

  165. Halayko AJ, Salari H, Ma X, et al. Markers of airway smooth muscle cell phenotype. Am J Physiol Lung Cell Mol Physiol. 1996;270:L1040–51.

    CAS  Google Scholar 

  166. Goldsmith AM, Bentley JK, Zhou L, et al. Transforming growth factor-beta induces airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol. 2006;34:247–54.

    PubMed  CAS  Google Scholar 

  167. Camoretti-Mercado B, Fernandes DJ, Dewundara S, et al. Inhibition of transforming growth factor beta-enhanced serum response factor-dependent transcription by SMAD7. J Biol Chem. 2006;281:20383–92.

    PubMed  CAS  Google Scholar 

  168. Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226:1035–43.

    PubMed  CAS  Google Scholar 

  169. Chan MC, Hilyard AC, Wu C, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29:559–73.

    PubMed  CAS  Google Scholar 

  170. Liu ZP, Wang Z, Yanagisawa H, et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Developmental Cell. 2005;9:261–70.

    PubMed  Google Scholar 

  171. Halayko AJ, Kartha S, Stelmack GL, et al. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation. Am J Respir Cell Mol Biol. 2004;31:266–75.

    PubMed  CAS  Google Scholar 

  172. Zhou L, Goldsmith AM, Bentley JK, et al. 4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol. 2005;33:195–202.

    PubMed  CAS  Google Scholar 

  173. Schaafsma D, McNeill KD, Stelmack GL, et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am J Physiol Cell Physiol. 2007;293:C429–39.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Heart and Stroke Foundation of Manitoba Grant-in-Aid (I.M.C.D.), the Canadian Institutes of Health Research (I.M.C.D. and J.T.W.), and the St. Boniface Hospital Research Foundation (I.M.C.D. and D.H.F.). A.J.H. holds a Canada Research Chair in Airway Cell and Molecular Biology. D.S. is supported by a CIHR fellowship and a CIHR/HSFC IMPACT strategic training program grant in pulmonary and cardiovascular research. R.H.C. is supported by a CIHR-RPP graduate scholarship. S.O. and J.M.D. are supported by an ICS studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. C. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cunnington, R.H. et al. (2011). Control of the Mesenchymal-Derived Cell Phenotype by Ski and Meox2: A Putative Mechanism for Postdevelopmental Phenoconversion. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics