Skip to main content

Involvement of Growth Factor Receptor and Nonreceptor Protein Tyrosine Kinases in Endothelin-1 and Angiotensin II-Induced Signaling Pathways in the Cardiovascular System

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

Endothelin-1 (ET-1) and angiotensin II (Ang II) play important roles in maintaining blood pressure and vascular homeostasis, and a heightened activity of these vasoactive peptides are thought to contribute to the development of vascular pathologies, such as hypertension, atherosclerosis, hypertrophy, and restenosis. This is caused by an excessive activation of several growth and proliferative signaling pathways, which include members of the mitogen-activated protein kinase (MAPK) family, as well as the phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) pathway. ET-1 and Ang II stimulate these pathways through the activation of transmembrane guanine nucleotide-binding protein-coupled receptors (GPCRs). While the activation of these signaling pathways is well elucidated, the upstream elements responsible for ET-1 and Ang II-induced MAPK and PI3-K/PKB activation remain poorly understood. During the last several years, the concept of transactivation of receptor protein tyrosine kinases (PTKs), such as EGFR, IGF-1R, and nonreceptor PTK, in triggering vasoactive peptide-induced signaling events has gained much recognition. As such, in this chapter, we provide an overview of the role of receptor and nonreceptor PTKs in modulating ET-1 and Ang II-induced PI3-K/PKB and MAPK signaling events in vascular smooth muscle cells (VSMC), and their potential implication in vascular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation. Cardiovascular diseases (CVDs) Fact sheet No. 317. World Health Organisation. 2009.

    Google Scholar 

  2. Bouallegue A, Daou GB, Srivastava AK. Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr Vasc Pharmacol. 2007;5:45–52.

    PubMed  CAS  Google Scholar 

  3. Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 1997;100(11 Suppl):S87–9.

    PubMed  CAS  Google Scholar 

  4. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    PubMed  CAS  Google Scholar 

  5. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    PubMed  CAS  Google Scholar 

  6. Bobik A, Grooms A, Millar JA, et al. Growth factor activity of endothelin on vascular smooth muscle. Am J Physiol Cell Physiol. 1990;258:C408–15.

    CAS  Google Scholar 

  7. Rabelink TJ, Kaasjager KA, Boer P, et al. Effects of endothelin-1 on renal function in humans: implications for physiology and pathophysiology. Kidney Int. 1994;46:376–81.

    PubMed  CAS  Google Scholar 

  8. Schiffrin EL. Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension. 1995;25:1135–43.

    PubMed  CAS  Google Scholar 

  9. Iglarz M, Schiffrin EL. Role of endothelin-1 in hypertension. Curr Hypertens Rep. 2003;5:144–8.

    PubMed  Google Scholar 

  10. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    PubMed  CAS  Google Scholar 

  11. Touyz RM, Schiffrin EL. Role of endothelin in human hypertension. Can J Physiol Pharmacol. 2003;81:533–41.

    PubMed  CAS  Google Scholar 

  12. Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–60.

    PubMed  CAS  Google Scholar 

  13. Hua H, Munk S, Whiteside CI. Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am J Physiol Renal Physiol. 2003;284:F303–12.

    PubMed  CAS  Google Scholar 

  14. Kodama H, Fukuda K, Takahashi T, et al. Role of EGF Receptor and Pyk2 in endothelin-1-induced ERK activation in rat cardiomyocytes. J Mol Cell Cardiol. 2002;34:139–50.

    PubMed  CAS  Google Scholar 

  15. Marrero MB, Schieffer B, Paxton WG, et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995;375:247–50.

    PubMed  CAS  Google Scholar 

  16. Marrero MB, Schieffer B, Li B, et al. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem. 1997;272:24684–90.

    PubMed  CAS  Google Scholar 

  17. Andreev J, Galisteo ML, Kranenburg O, et al. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem. 2001;276:20130–5.

    PubMed  CAS  Google Scholar 

  18. Bouallegue A, Vardatsikos G, Srivastava AK. Role of insulin-like growth factor 1 receptor and c-Src in endothelin-1- and angiotensin II-induced PKB phosphorylation, and hypertrophic and proliferative responses in vascular smooth muscle cells. Can J Physiol Pharmacol. 2009;87:1009–18.

    PubMed  CAS  Google Scholar 

  19. Bouallegue A, Daou GB, Srivastava AK. Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol. 2007;293:H2072–9.

    PubMed  CAS  Google Scholar 

  20. Mehdi MZ, Vardatsikos G, Pandey SK, et al. Involvement of insulin-like growth factor type 1 receptor and protein kinase Cdelta in bis(maltolato)oxovanadium(IV)-induced phosphorylation of protein kinase B in HepG2 cells. Biochem. 2006;45:11605–15.

    CAS  Google Scholar 

  21. Pandey NR, Vardatsikos G, Mehdi MZ, et al. Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+−induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem. 2010;15:399–407.

    PubMed  CAS  Google Scholar 

  22. Touyz RM, He G, Wu XH, et al. Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension. 2001;38:56–64.

    PubMed  CAS  Google Scholar 

  23. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20:953–70.

    PubMed  CAS  Google Scholar 

  24. Attina T, Camidge R, Newby DE, et al. Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart. 2005;91:825–31.

    PubMed  CAS  Google Scholar 

  25. Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA. 1989;86:2863–7.

    PubMed  CAS  Google Scholar 

  26. Gray GA. Generation of endothelin. In: Gray GA, Webb D, editors. Molecular biology and pharmacology of the endothelins. Austin: RG Landes; 1995. p. 13–32.

    Google Scholar 

  27. Arai H, Hori S, Aramori I, et al. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–2.

    PubMed  CAS  Google Scholar 

  28. Sakurai T, Yanagisawa M, Takuwa Y, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990;348:732–5.

    PubMed  CAS  Google Scholar 

  29. Ratnala VR, Kobilka B. Understanding the ligand-receptor-G protein ternary complex for GPCR drug discovery. Methods Mol Biol. 2009;552:67–77.

    PubMed  CAS  Google Scholar 

  30. Harris DM, Cohn HI, Pesant S, et al. GPCR signalling in hypertension: role of GRKs. Clin Sci (Lond). 2008;115:79–89.

    CAS  Google Scholar 

  31. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312.

    PubMed  CAS  Google Scholar 

  32. Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem. 1998;182:31–48.

    PubMed  CAS  Google Scholar 

  33. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999;11:219–25.

    PubMed  CAS  Google Scholar 

  34. Deleris P, Gayral S, Breton-Douillon M. Nuclear Ptdlns(3,4,5)P3 signaling: an ongoing story. J Cell Biochem. 2006;98:469–85.

    PubMed  CAS  Google Scholar 

  35. Hawkins PT, Anderson KE, Davidson K, et al. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans. 2006;34:647–62.

    PubMed  CAS  Google Scholar 

  36. Wymann MP, Zvelebil M, Laffargue M. Phosphoinositide 3-kinase signalling – which way to target? Trends Pharmacol Sci. 2003;24:366–76.

    PubMed  CAS  Google Scholar 

  37. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Ann Rev Biochem. 1998;67:481–507.

    PubMed  CAS  Google Scholar 

  38. Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J. 2006;53:267–93.

    PubMed  CAS  Google Scholar 

  39. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    PubMed  CAS  Google Scholar 

  40. Toker A, Newton AC. Cellular signaling: pivoting around PDK-1. Cell. 2000;103:185–8.

    PubMed  CAS  Google Scholar 

  41. Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol. 1998;10:262–7.

    PubMed  CAS  Google Scholar 

  42. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 1998;335:1–13.

    PubMed  CAS  Google Scholar 

  43. Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15:6541–51.

    PubMed  CAS  Google Scholar 

  44. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965–1014.

    PubMed  CAS  Google Scholar 

  45. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7:261–9.

    PubMed  CAS  Google Scholar 

  46. Dong LQ, Liu F. PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab. 2005;289:E187–96.

    PubMed  CAS  Google Scholar 

  47. Fayard E, Tintignac LA, Baudry A, et al. Protein kinase B/Akt at a glance. J Cell Sci. 2005;118:5675–8.

    PubMed  CAS  Google Scholar 

  48. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT – a major therapeutic target. Biochim Biophys Acta. 2004;1697:3–16.

    PubMed  CAS  Google Scholar 

  49. Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.

    PubMed  CAS  Google Scholar 

  50. Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2003;285:E685–92.

    PubMed  CAS  Google Scholar 

  51. Rena G, Guo S, Cichy SC, et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem. 1999;274:17179–83.

    PubMed  CAS  Google Scholar 

  52. Hixon ML, Muro-Cacho C, Wagner MW, et al. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J Clin Invest. 2000;106:1011–20.

    PubMed  CAS  Google Scholar 

  53. Pham FH, Cole SM, Clerk A. Regulation of cardiac myocyte protein synthesis through phosphatidylinositol 3′ kinase and protein kinase B. Adv Enzyme Regul. 2001;41:73–86.

    PubMed  CAS  Google Scholar 

  54. Dong F, Zhang X, Wold LE, et al. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br J Pharmacol. 2005;145:323–33.

    PubMed  CAS  Google Scholar 

  55. Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med. 2004;37:208–15.

    PubMed  CAS  Google Scholar 

  56. Seger R, Krebs EG. The MAPK signaling cascade. Faseb J. 1995;9:726–35.

    PubMed  CAS  Google Scholar 

  57. Kyosseva SV. Mitogen-activated protein kinase signaling. Int Rev Neurobiol. 2004;59:201–20.

    PubMed  CAS  Google Scholar 

  58. Ohtsu H, Mifune M, Frank GD, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25:1831–6.

    PubMed  CAS  Google Scholar 

  59. Eguchi S, Dempsey PJ, Frank GD, et al. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem. 2001;276:7957–62.

    PubMed  CAS  Google Scholar 

  60. Araki S, Haneda M, Togawa M, et al. Endothelin-1 activates c-Jun NH2-terminal kinase in mesangial cells. Kidney Int. 1997;51:631–9.

    PubMed  CAS  Google Scholar 

  61. Touyz RM, He G, El Mabrouk M, et al. Differential activation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen activated-protein kinase by AT1 receptors in vascular smooth muscle cells from Wistar-Kyoto rats and spontaneously hypertensive rats. J Hypertens. 2001;19:553–9.

    PubMed  CAS  Google Scholar 

  62. Zhou MS, Schulman IH, Chadipiralla K, et al. Role of c-Jun N-terminal kinase in the regulation of vascular tone. J Cardiovasc Pharmacol Ther. 2010;15:78–83.

    PubMed  CAS  Google Scholar 

  63. Izumi Y, Kim S, Zhan Y, et al. Important role of angiotensin II-mediated c-Jun NH(2)-terminal kinase activation in cardiac hypertrophy in hypertensive rats. Hypertension. 2000;36:511–6.

    PubMed  CAS  Google Scholar 

  64. Ding G, Zhang A, Huang S, et al. ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am J Physiol Renal Physiol. 2007;293:F1889–97.

    PubMed  CAS  Google Scholar 

  65. Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Therap. 2007;116:192–206.

    CAS  Google Scholar 

  66. Chang F, Steelman LS, Lee JT, et al. Signal transduction mediated by the Ras//Raf//MEK//ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17:1263–93.

    PubMed  CAS  Google Scholar 

  67. Touyz RM, Yao G, Viel E, et al. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens. 2004;22:1141–9.

    PubMed  CAS  Google Scholar 

  68. Daigle C, Martens FM, Girardot D, et al. Signaling of angiotensin II-induced vascular protein synthesis in conduit and resistance arteries in vivo. BMC Cardiovasc Disord. 2004;4:6.

    PubMed  Google Scholar 

  69. Gadea A, Aguirre A, Haydar TF, et al. Endothelin-1 regulates oligodendrocyte development. J Neurosci. 2009;29:10047–62.

    PubMed  CAS  Google Scholar 

  70. Hama K, Ohnishi H, Yasuda H, et al. Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem Biophys Res Commun. 2004;315:905–11.

    PubMed  CAS  Google Scholar 

  71. Mendelson J. Blockade of receptors for growth factors: an anticancer therapy – the fourth annual Joseph H Burchenal American Association of Cancer Research Clinical Research Award Lecture. Clin Cancer Res. 2000;6:747–53.

    Google Scholar 

  72. Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 2002;110:669–72.

    PubMed  CAS  Google Scholar 

  73. Carpenter G. The EGF receptor: a nexus for trafficking and signaling. Bioessays. 2000;22:697–707.

    PubMed  CAS  Google Scholar 

  74. Prenzel N, Fischer OM, Streit S, et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer. 2001;8:11–31.

    PubMed  CAS  Google Scholar 

  75. Normanno N, Bianco C, Strizzi L, et al. The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets. 2005;6:243–57.

    PubMed  CAS  Google Scholar 

  76. Zhang X, Gureasko J, Shen K, et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125:1137–49.

    PubMed  CAS  Google Scholar 

  77. Burgess AW, Cho HS, Eigenbrot C, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell. 2003;12:541–52.

    PubMed  CAS  Google Scholar 

  78. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    PubMed  CAS  Google Scholar 

  79. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    PubMed  CAS  Google Scholar 

  80. Linggi B, Carpenter G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 2006;16:649–56.

    PubMed  CAS  Google Scholar 

  81. Wu SL, Kim J, Bandle RW, et al. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol Cell Proteomics. 2006;5:1610–27.

    PubMed  CAS  Google Scholar 

  82. Bokemeyer D, Schmitz U, Kramer HJ. Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 2000;58:549–58.

    PubMed  CAS  Google Scholar 

  83. Grantcharova E, Reusch HP, Grossmann S, et al. N-terminal proteolysis of the endothelin B receptor abolishes its ability to induce EGF receptor transactivation and contractile protein expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2006;26:1288–96.

    PubMed  CAS  Google Scholar 

  84. Eguchi S, Iwasaki H, Inagami T, et al. Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension. 1999;33:201–6.

    PubMed  CAS  Google Scholar 

  85. Eguchi S, Iwasaki H, Hirata Y, et al. Epidermal growth factor receptor is indispensable for c-Fos expression and protein synthesis by angiotensin II. Eur J Pharmacol. 1999;376:203–6.

    PubMed  CAS  Google Scholar 

  86. Moriguchi Y, Matsubara H, Mori Y, et al. Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circ Res. 1999;84:1073–84.

    PubMed  CAS  Google Scholar 

  87. Chiu T, Santiskulvong C, Rozengurt E. EGF receptor transactivation mediates ANG II-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway. Am J Physiol Gastrointest Liver Physiol. 2005;288:G182–94.

    PubMed  CAS  Google Scholar 

  88. Andresen BT, Linnoila JJ, Jackson EK, et al. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells. Hypertension. 2003;41:781–6.

    PubMed  CAS  Google Scholar 

  89. Shah BH, Catt KJ. Calcium-independent activation of extracellularly regulated kinases 1 and 2 by angiotensin II in hepatic C9 cells: roles of protein kinase Cdelta, Src/proline-rich tyrosine kinase 2, and epidermal growth receptor trans-activation. Mol Pharmacol. 2002;61:343–51.

    PubMed  CAS  Google Scholar 

  90. Iwasaki H, Eguchi S, Ueno H, et al. Endothelin-mediated vascular growth requires p42/p44 mitogen-activated protein kinase and p70 S6 kinase cascades via transactivation of epidermal growth factor receptor. Endocrinology. 1999;140:4659–68.

    PubMed  CAS  Google Scholar 

  91. Li F, Malik KU. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D. J Pharmacol Exp Ther. 2005;312:1043–54.

    PubMed  CAS  Google Scholar 

  92. Cheng-Hsien C, Yung-Ho H, Yuh-Mou S, et al. Src homology 2-containing phosphotyrosine phosphatase regulates endothelin-1-induced epidermal growth factor receptor transactivation in rat renal tubular cell NRK-52E. Pflugers Arch. 2006;452:16–24.

    PubMed  Google Scholar 

  93. Ohtsu H, Dempsey PJ, Frank GD, et al. ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II. Arterioscler Thromb Vasc Biol. 2006;26:e133–7.

    PubMed  Google Scholar 

  94. Iwasaki H, Eguchi S, Marumo F, et al. Endothelin-1 stimulates DNA synthesis of vascular smooth-muscle cells through transactivation of epidermal growth factor receptor. J Cardiovasc Pharmacol. 1998;31 Suppl 1:S182–4.

    PubMed  CAS  Google Scholar 

  95. Flamant M, Tharaux PL, Placier S, et al. Epidermal growth factor receptor trans-activation mediates the tonic and fibrogenic effects of endothelin in the aortic wall of transgenic mice. FASEB J. 2003;17:327–9.

    PubMed  CAS  Google Scholar 

  96. Kawanabe Y, Masaki T, Hashimoto N. Involvement of epidermal growth factor receptor-protein tyrosine kinase transactivation in endothelin-1-induced vascular contraction. J Neurosurg. 2004;100:1066–71.

    PubMed  CAS  Google Scholar 

  97. Paquet JL, Baudouin-Legros M, Marche P, et al. Enhanced proliferating activity of cultured smooth muscle cells from SHR. Am J Hypertens. 1989;2:108–10.

    PubMed  CAS  Google Scholar 

  98. Li Y, Levesque LO, Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol. 2010;299:H1959–67.

    PubMed  CAS  Google Scholar 

  99. Vardatsikos G, Sahu A, Srivastava A. The insulin-like growth factor family: molecular mechanisms, redox regulation and clinical implications. Antioxid Redox Signal. 2009;11:1165–90.

    PubMed  CAS  Google Scholar 

  100. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5:2503–12.

    PubMed  CAS  Google Scholar 

  101. Heldin CH, Ostman A. Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev. 1996;7:3–10.

    PubMed  CAS  Google Scholar 

  102. Ward CW, Garrett TPJ, McKern NM, et al. The three dimensional structure of the type I insulin-like growth factor receptor. Mol Pathol. 2001;54:125–32.

    PubMed  CAS  Google Scholar 

  103. De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769–83.

    PubMed  Google Scholar 

  104. Adams TE, Epa VC, Garrett TP, et al. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57:1050–93.

    PubMed  CAS  Google Scholar 

  105. Gronborg M, Wulff BS, Rasmussen JS, et al. Structure-function relationship of the insulin-like growth factor-I receptor tyrosine kinase. J Biol Chem. 1993;268:23435–40.

    PubMed  CAS  Google Scholar 

  106. Tsuruzoe K, Emkey R, Kriauciunas KM, et al. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol. 2001;21:26–38.

    PubMed  CAS  Google Scholar 

  107. White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283:E413–22.

    PubMed  CAS  Google Scholar 

  108. LeRoith D, Werner H, Beitner-Johnson D, et al. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16:143–63.

    PubMed  CAS  Google Scholar 

  109. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    PubMed  CAS  Google Scholar 

  110. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol. 2003;30:860–6.

    PubMed  CAS  Google Scholar 

  111. Du J, Sperling LS, Marrero MB, et al. G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. Biochem Biophys Res Commun. 1996;218:934–9.

    PubMed  CAS  Google Scholar 

  112. Zahradka P, Litchie B, Storie B, et al. Transac-tivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology. 2004;145:-2978–87.

    PubMed  CAS  Google Scholar 

  113. Touyz RM, Cruzado M, Tabet F, et al. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol. 2003;81:159–67.

    PubMed  CAS  Google Scholar 

  114. Cruzado MC, Risler NR, Miatello RM, et al. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Am J Hypertens. 2005;18:81–7.

    PubMed  CAS  Google Scholar 

  115. Delafontaine P, Lou H. Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. J Biol Chem. 1993;268:16866–70.

    PubMed  CAS  Google Scholar 

  116. Brink M, Chrast J, Price SR, et al. Angiotensin II stimulates gene expression of cardiac insulin-like growth factor I and its receptor through effects on blood pressure and food intake. Hypertension. 1999;34:1053–9.

    PubMed  CAS  Google Scholar 

  117. Muller C, Reddert A, Wassmann S, et al. Insulin-like growth factor induces up-regulation of AT(1)-receptor gene expression in vascular smooth muscle cells. J Renin Angiotensin Aldosterone Syst. 2000;1:273–7.

    PubMed  CAS  Google Scholar 

  118. Nguyen TT, White PJ. Intravenous IGF-I receptor antisense reduces IGF-IR expression and diminishes pressor responses to angiotensin II in conscious normotensive rats. Br J Pharmacol. 2005;146:935–41.

    PubMed  CAS  Google Scholar 

  119. Nguyen TT, Cao N, Short JL, et al. Intravenous insulin-like growth factor-I receptor antisense treatment reduces angiotensin receptor expression and function in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2006;318:1171–7.

    PubMed  CAS  Google Scholar 

  120. Lim HJ, Park HY, Ko YG, et al. Dominant negative insulin-like growth factor-1 receptor inhibits neointimal formation through suppression of vascular smooth muscle cell migration and proliferation, and induction of apoptosis. Biochem Biophys Res Commun. 2004;325:1106–14.

    PubMed  CAS  Google Scholar 

  121. Gomez Sandoval YH, Anand-Srivastava MB. Enhanced levels of endogenous endothelin-1 contribute to the over expression of Gialpha protein in vascular smooth muscle cells from SHR: role of growth factor receptor activation. Cell Signal. 2011;23:354–62.

    PubMed  CAS  Google Scholar 

  122. Lappas G, Daou GB, Anand-Srivastava MB. Oxidative stress contributes to the enhanced expression of Gialpha proteins and adenylyl cyclase signaling in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens. 2005;23:2251–61.

    PubMed  CAS  Google Scholar 

  123. Rous P. A transmissible avian neoplasm (Sarcoma of the common fowl). J Exp Med. 1979;150:738–53.

    PubMed  CAS  Google Scholar 

  124. Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. Oncologist. 2009;14:667–78.

    PubMed  CAS  Google Scholar 

  125. Roskoski Jr R. Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 2004;324:1155–64.

    PubMed  CAS  Google Scholar 

  126. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287:121–49.

    PubMed  Google Scholar 

  127. Alvarez RH, Kantarjian HM, Cortes JE. The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer. 2006;107:1918–29.

    PubMed  CAS  Google Scholar 

  128. Rucci N, Susa M, Teti A. Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem. 2008;8:342–9.

    PubMed  CAS  Google Scholar 

  129. Lu R, Alioua A, Kumar Y, et al. c-Src tyrosine kinase, a critical component for 5-HT2A receptor-mediated contraction in rat aorta. J Physiol. 2008;586:3855–69.

    PubMed  CAS  Google Scholar 

  130. Touyz RM, Wu XH, He G, et al. Role of c-Src in the regulation of vascular contraction and Ca2+ signaling by angiotensin II in human vascular smooth muscle cells. J Hypertens. 2001;19:441–9.

    PubMed  CAS  Google Scholar 

  131. Hanke JH, Gardner JP, Dow RL, et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996;271:695–701.

    PubMed  CAS  Google Scholar 

  132. Prenzel N, Zwick E, Leserer M, et al. Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast Cancer Res. 2000;2:184–90.

    PubMed  CAS  Google Scholar 

  133. Zhuang S, Schnellmann RG. H2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am J Physiol Renal Physiol. 2004;286:F858–65.

    PubMed  Google Scholar 

  134. Saito S, Frank GD, Mifune M, et al. Ligand-independent trans-activation of the platelet-derived growth factor receptor by reactive oxygen species requires protein kinase C-delta and c-Src. J Biol Chem. 2002;277:44695–700.

    PubMed  CAS  Google Scholar 

  135. Catarzi S, Biagioni C, Giannoni E, et al. Redox regulation of platelet-derived-growth-factor-receptor: role of NADPH-oxidase and c-Src tyrosine kinase. Biochim Biophys Acta. 2005;1745:166–75.

    PubMed  CAS  Google Scholar 

  136. Yogi A, Callera GE, Montezano AC, et al. Endothelin-1, but not Ang II, activates MAP kinases through c-Src independent Ras-Raf dependent pathways in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007;27:1960–7.

    PubMed  CAS  Google Scholar 

  137. Ishida M, Ishida T, Thomas SM, et al. Activation of extracellular signal-regulated kinases (ERK1/2) by angiotensin II is dependent on c-Src in vascular smooth muscle cells. Circ Res. 1998;82:7–12.

    PubMed  CAS  Google Scholar 

  138. Rosado JA, Redondo PC, Salido GM, et al. Hydrogen peroxide generation induces pp 60src activation in human platelets: evidence for the involvement of this pathway in store-mediated calcium entry. J Biol Chem. 2004;279:1665–75.

    PubMed  CAS  Google Scholar 

  139. Azar ZM, Mehdi MZ, Srivastava AK. Activation of insulin-like growth factor type-1 receptor is required for H2O2-induced PKB phosphorylation in vascular smooth muscle cells. Can J Physiol Pharmacol. 2006;84:777–86.

    PubMed  CAS  Google Scholar 

  140. Mehdi MZ, Pandey NR, Pandey SK, et al. H2O2-induced phosphorylation of ERK1/2 and PKB requires tyrosine kinase activity of insulin receptor and c-Src. Antioxid Redox Signal. 2005;7:1014–20.

    PubMed  CAS  Google Scholar 

  141. Tabet F, Schiffrin EL, Touyz RM. Mitogen-activated protein kinase activation by hydrogen peroxide is mediated through tyrosine kinase-dependent, protein kinase C-independent pathways in vascular smooth muscle cells: upregulation in spontaneously hypertensive rats. J Hypertens. 2005;23:2005–12.

    PubMed  CAS  Google Scholar 

  142. Lee JS, Kim SY, Kwon CH, et al. EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol. 2005;80:1–10.

    CAS  Google Scholar 

  143. Esposito F, Chirico G, Montesano GN, et al. Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J Biol Chem. 2003;278:20828–34.

    PubMed  CAS  Google Scholar 

  144. Lev S, Moreno H, Martinez R, et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature. 1995;376:737–45.

    PubMed  CAS  Google Scholar 

  145. Avraham H, Park SY, Schinkmann K, et al. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12:123–33.

    PubMed  CAS  Google Scholar 

  146. Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010;123:1007–13.

    PubMed  CAS  Google Scholar 

  147. Riggs D, Yang Z, Kloss J, Loftus JC. The Pyk2 FERM regulates Pyk2 complex formation and phosphorylation. Cell Signal. 2011;23:288–96.

    PubMed  CAS  Google Scholar 

  148. Sieg DJ, Ilic D, Jones KC, et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO J. 1998;17:5933–47.

    PubMed  CAS  Google Scholar 

  149. Dikic I, Tokiwa G, Lev S, et al. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996;383:547–50.

    PubMed  CAS  Google Scholar 

  150. Frank GD, Saito S, Motley ED, et al. Requirement of Ca2+ and PKCdelta for Janus kinase 2 activation by angiotensin II: involvement of PYK2. Mol Endocrinol. 2002;16:367–77.

    PubMed  CAS  Google Scholar 

  151. Ivey ME, Osman N, Little PJ. Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis. 2008;199:237–47.

    PubMed  CAS  Google Scholar 

  152. Kawanabe Y, Hashimoto N, Masaki T. Involvements of voltage-independent Ca2+ channels and phosphoinositide 3-kinase in endothelin-1-induced PYK2 tyrosine phosphorylation. Mol Pharmacol. 2003;63:808–13.

    PubMed  CAS  Google Scholar 

  153. Sabri A, Govindarajan G, Griffin TM, et al. Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res. 1998;83:841–51.

    PubMed  CAS  Google Scholar 

  154. Van KK, Gilany K, Moens L, et al. P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal. 2006;18:1169–81.

    Google Scholar 

  155. Hao L, Nishimura T, Wo H, et al. Vascular responses to alpha1-adrenergic receptors in small rat mesenteric arteries depend on mitochondrial reactive oxygen species. Arterioscler Thromb Vasc Biol. 2006;26:819–25.

    PubMed  CAS  Google Scholar 

  156. Saito S, Frank GD, Motley ED, et al. Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem Biophys Res Commun. 2002;294:1023–9.

    PubMed  CAS  Google Scholar 

  157. Nagareddy PR, Chow FL, Hao L, et al. Maintenance of adrenergic vascular tone by MMP transactivation of the EGFR requires PI3K and mitochondrial ATP synthesis. Cardiovasc Res. 2009;84:368–77.

    PubMed  CAS  Google Scholar 

  158. Duerrschmidt N, Wippich N, Goettsch W, et al. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun. 2000;269:713–7.

    PubMed  CAS  Google Scholar 

  159. Wedgwood S, Black SM. Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol. 2005;288:L480–7.

    PubMed  CAS  Google Scholar 

  160. Cheng CM, Hong HJ, Liu JC, et al. Crucial role of extracellular signal-regulated kinase pathway in reactive oxygen species-mediated endothelin-1 gene expression induced by endothelin-1 in rat cardiac fibroblasts. Mol Pharmacol. 2003;63:1002–11.

    PubMed  CAS  Google Scholar 

  161. Wenzel S, Taimor G, Piper HM, et al. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15:2291–3.

    PubMed  CAS  Google Scholar 

  162. Mahrouf M, Ouslimani N, Peynet J, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol. 2006;72:176–83.

    PubMed  CAS  Google Scholar 

  163. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  164. Zafari AM, Ushio-Fukai M, Akers M, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 1998;32:488–95.

    PubMed  CAS  Google Scholar 

  165. Zhang Y, Griendling KK, Dikalova A, et al. Vascular hypertrophy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2O2. Hypertension. 2005;46:732–7.

    PubMed  CAS  Google Scholar 

  166. Frank GD, Mifune M, Inagami T, et al. Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol Cell Biol. 2003;23:1581–9.

    PubMed  CAS  Google Scholar 

  167. Lee SR, Kwon KS, Kim SR, et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998;273:15366–72.

    PubMed  CAS  Google Scholar 

  168. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell. 2002;9:387–99.

    PubMed  CAS  Google Scholar 

  169. Leslie NR, Bennett D, Lindsay YE, et al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003;22:5501–10.

    PubMed  CAS  Google Scholar 

  170. Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277:20336–42.

    PubMed  CAS  Google Scholar 

  171. Seo JH, Ahn Y, Lee SR, et al. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell. 2005;16:348–57.

    PubMed  CAS  Google Scholar 

  172. Kwon J, Lee SR, Yang KS, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA. 2004;101:16419–24.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is supported by funding from the Canadian Institutes of Health Research (CIHR) operating grant number 67037 to A.K.S. G.V. is the recipient of PhD studentships from the Faculty of Medicine, Université de Montréal and the Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vardatsikos, G., Srivastava, A.K. (2011). Involvement of Growth Factor Receptor and Nonreceptor Protein Tyrosine Kinases in Endothelin-1 and Angiotensin II-Induced Signaling Pathways in the Cardiovascular System. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics