Advertisement

The Structural Basis of Cardiac Dysfunction in Human Heart Failure

  • Stefan Hein
  • Sawa Kostin
  • Jutta Schaper
Chapter

Abstract

In this chapter we describe the structural alterations observed in failing human myocardium. We review the current literature and compare these reports with our own findings. One of the earliest significant structural changes is the occurrence of myocyte hypertrophy and a significant degree of reactive fibrosis, which are the major factors causing diastolic dysfunction. Furthermore, we describe equivalents of systolic dysfunction: the ultrastructural changes indicating myocyte degeneration characterized by the reduction of myofilaments, an increase in cytoplasm, and the occurrence of small mitochondria with less cristae. The cytoskeleton: the microtubuli showed densification and desmin was augmented and irregularly arranged, most probably a mechanism compensatory for reduced cellular stability because of loss of sarcomeres. The remaining sarcomeres showed less elements of the sarcomeric skeleton, i.e., of titin, α-actinin, and myomesin, which contributes to sarcomeric instability. Membrane damage leads to ionic imbalance and is caused by either loss or increase of the membrane proteins dystrophin, the vinculin–talin–­integrin complex, and of spectrin. The gap junctional protein connexin 43 of the intercalated disc is likewise reduced and represents the basis of defects of the excitation–contraction coupling. In the extracellular space, an accumulation of blood borne cells indicates a process of chronic low-grade inflammation, which is injurious to the sarcolemma of the myocyte. These different processes involving the interstitium as well as almost all cellular components of the cardiomyocytes will finally lead to myocyte death, either autophagic or oncotic but less apoptotic. It is postulated that fibrosis and myocyte hypertrophy combined with loss of sarcomeres are the structural equivalent of diastolic dysfunction. Systolic dysfunction occurs at a later stage of ­progression to heart failure and is caused by damage of the various ­components of the myocytes in addition to cellular hypertrophy and ­fibrosis. In conclusion, the development of heart failure is a multifactorial event involving the extracellular matrix and almost all cellular components of the myocytes. Therefore; fibrosis as well as myocyte degeneration and cell death are the structural factors determining cardiac dysfunction.

Keywords

Heart failure Cardiac structure Fibrosis Myocyte degeneration Cell death Fibronectin Collagen Contractile filaments Sarcomeric skeleton Cytoskeleton Dystrophin T-tubules Gap junctions Ubiquitin C9 Extracellular matrix Apoptosis Diastolic dysfunction Systolic dysfunction 

References

  1. 1.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.PubMedGoogle Scholar
  2. 2.
    Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.PubMedCrossRefGoogle Scholar
  3. 3.
    Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89:265–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Villari B, Hess OM, Piscione F, Vassalli G, Weber KT, Chiariello M. Heart function in chronic pressure overload caused by aortic stenosis: the role of collagen tissue. Cardiologia. 1994;39:411–20.PubMedGoogle Scholar
  5. 5.
    Weber KT, Sun Y, Tyagi SC, et al. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol. 1994;26:279–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg. 2006;30:604–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Konstam MA, Udelson JE, Anand IS, et al. Ventricular remodeling in heart failure: a credible surrogate endpoint. J Card Fail. 2003;9:350–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Heling A, Zimmermann R, Kostin S, et al. Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res. 2000;86:846–53.PubMedGoogle Scholar
  10. 10.
    Risteli J, Risteli L. Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol. 1995;22(2 Suppl):77–81.PubMedGoogle Scholar
  11. 11.
    Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest. 2010;120:3520–9.PubMedCrossRefGoogle Scholar
  13. 13.
    de Cavanagh EM, Ferder M, Inserra F, et al. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol. 2009;296:H550–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Levick SP, Melendez GC, Plante E, et al. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011;89:12–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Polyakova V, Hein S, Kostin S. Matrix metalloproteinases and their tissue inhibitors in pressure-­overloaded human myocardium during heart failure progression. J Am Coll Cardiol. 2004;44:1609–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Polyakova V, Loeffler I, Hein S, et al. Fibrosis in endstage human heart failure: Severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. (2010), doi:10.1016/j.ijcard.2010.04.053 in press.Google Scholar
  17. 17.
    Schaper J, Froede R, Hein S, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991;83:504–14.PubMedGoogle Scholar
  18. 18.
    Terman A, Kurz T, Gustafsson B, et al. The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev. 2008;4:107–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Maloyan A, Sayegh J, Osinska H, et al. Manipulation of death pathways in desmin-related cardiomyopathy. Circ Res. 2010;106:1524–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Scholz D, Diener W, Schaper J. Altered nucleus/cytoplasm relationship and degenerative structural changes in human dilated cardiomyopathy. Cardioscience. 1994;5:127–38.PubMedGoogle Scholar
  21. 21.
    Soonpa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res. 1998;83:15–26.Google Scholar
  22. 22.
    Schwarz F, Schaper J, Kittstein D, et al. Reduced volume fraction of myofibrils in myocardium of patients with decompensated pressure overload. Circulation. 1981;63:1299–304.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwarz F, Schaper J, Kittstein D, et al. Quantitative ultrastructural findings of the myocardium in the failing heart. I. Aortic valve insufficiency. Z Kardiol. 1981;70:729–32.PubMedGoogle Scholar
  24. 24.
    Maron BJ, Ferrans VJ, Roberts WC. Myocardial ultrastructure in patients with chronic aortic valve ­disease. Am J Cardiol. 1975;35:725–39.PubMedCrossRefGoogle Scholar
  25. 25.
    Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102(20 Suppl 4):IV14–23.PubMedGoogle Scholar
  26. 26.
    Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve. 2007;36:740–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Obermann WM, Gautel M, Steiner F, et al. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol. 1996;134:1441–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Der Ven PF, Obermann WM, Weber K, et al. Myomesin, M-protein and the structure of the sarcomeric M-band. Adv Biophys. 1996;33:91–9.CrossRefGoogle Scholar
  29. 29.
    Granzier HL, Radke MH, Peng J, et al. Truncation of titin’s elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res. 2009;105:557–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Tskhovrebova L, Trinick J. Roles of titin in the structure and elasticity of the sarcomere. J Biomed Biotechnol. 2010;2010:612482.PubMedCrossRefGoogle Scholar
  31. 31.
    LeWinter MM, Granzier H. Cardiac titin: a multifunctional giant. Circulation. 2010;121:2137–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Hein S, Scholz D, Fujitani N, et al. Altered expression of titin and contractile proteins in failing human ­myocardium. J Mol Cell Cardiol. 1994;26:1291–306.PubMedCrossRefGoogle Scholar
  33. 33.
    Person V, Kostin S, Suzuki K, et al. Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci. 2000;113(Pt 21):3851–9.PubMedGoogle Scholar
  34. 34.
    Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008;65:2688–701.PubMedCrossRefGoogle Scholar
  35. 35.
    Kostin S, Hein S, Arnon E, et al. The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev. 2000;5:271–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Hein S, Block T, Zimmermann R, et al. Deposition of nonsarcomeric alpha-actinin in cardiomyocytes from patients with dilated cardiomyopathy or chronic pressure overload. Exp Clin Cardiol. 2009;14:e68–75.PubMedGoogle Scholar
  37. 37.
    Obermann WM, Gautel M, Weber K, et al. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 1997;16:211–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Furst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol. 1999;138:163–202.PubMedCrossRefGoogle Scholar
  39. 39.
    Fukuzawa A, Lange S, Holt M, et al. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band: implications for hereditary myopathies. J Cell Sci. 2008;121(Pt 11):1841–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Barefield D, Sadayappan S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol. 2010;48:866–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Gt C. by Cooper, G. Cardiocyte adaptation to chronically altered load. Annu Rev Physiol. 1987;49:501–18.CrossRefGoogle Scholar
  42. 42.
    Gt C. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2006;291:H1003–14.CrossRefGoogle Scholar
  43. 43.
    Tsutsui H, Ishihara K, Cooper GT. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science. 1993;260:682–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsutsui H, Tagawa H, Kent RL, et al. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation. 1994;90:533–55.PubMedGoogle Scholar
  45. 45.
    Tagawa H, Wang N, Narishige T. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res. 1997;80:281–9.PubMedGoogle Scholar
  46. 46.
    Scholz D, Baicu CF, Tuxworth WJ, et al. Microtubule-dependent distribution of mRNA in adult cardiocytes. Am J Physiol Heart Circ Physiol. 2008;294:H1135–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Hein S, Kostin S, Heling A, et al. The role of the cytoskeleton in heart failure. Cardiovasc Res. 2000;45:273–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119:1806–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Anastasi G, Cutroneo G, Gaeta R, et al. Dystrophin-glycoprotein complex and vinculin-talin-integrin ­system in human adult cardiac muscle. Int J Mol Med. 2009;23:149–59.PubMedGoogle Scholar
  50. 50.
    Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66:1121–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Le Rumeur E, Winder SJ, Hubert JF. Dystrophin: more than just the sum of its parts. Biochim Biophys Acta. 2010;1804:1713–22.PubMedGoogle Scholar
  52. 52.
    Kaprielian RR, Severs NJ. Dystrophin and the cardiomyocyte membrane cytoskeleton in the healthy and failing heart. Heart Fail Rev. 2000;5:221–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Kostin S, Scholz D, Shimada T, et al. The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res. 1998;294:449–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Prochniewicz E, Henderson D, Ervasti JM, et al. Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Natl Acad Sci USA. 2009;106:7822–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Kawada T, Masui F, Tezuka A, et al. A novel scheme of dystrophin disruption for the progression of advanced heart failure. Biochim Biophys Acta. 2005;1751:73–81.PubMedGoogle Scholar
  56. 56.
    Toyo-Oka T, Kawada T, Nakata J, et al. Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction. Proc Natl Acad Sci USA. 2004;101:7381–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Towbin JA, Bowles KR, Bowles NE. Etiologies of cardiomyopathy and heart failure. Nat Med. 1999;5:266–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Geiger B, Tokuyasu KT, Dutton AH, et al. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA. 1980;77:4127–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Schwartz MA. Transmembrane signalling by integrins. Trends Cell Biol. 1992;2:304–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolfenson H, Henis YI, Geiger B, et al. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton. 2009;66:1017–29.PubMedCrossRefGoogle Scholar
  63. 63.
    Arber S, Hunter JJ, Ross Jr J, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88:393–403.PubMedCrossRefGoogle Scholar
  64. 64.
    Zolk O, Caroni P, Bohm M. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation. 2000;101:2674–7.PubMedGoogle Scholar
  65. 65.
    Vasile VC, Will ML, Ommen SR, et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab. 2006;87:169–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Vasile VC, Edwards WD, Ommen SR, et al. Obstruc­tive hypertrophic cardiomyopathy is associated with reduced expression of vinculin in the ­intercalated disc. Biochem Biophys Res Commun. 2006;349:709–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Bito V, Heinzel FR, Biesmans L, et al. Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res. 2008;77:315–24.PubMedCrossRefGoogle Scholar
  68. 68.
    He J, Conklin MW, Foell JD, et al. Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49:298–307.PubMedCrossRefGoogle Scholar
  69. 69.
    Heinzel FR, Bito V, Biesmans L, et al. Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res. 2008;102:338–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Louch WE, Mork HK, Sexton J, et al. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006;574:519–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Song LS, Sobie EA, McCulle S, et al. Orphaned ­ryanodine receptors in the failing heart. Proc Natl Acad Sci USA. 2006;103:4305–10.PubMedCrossRefGoogle Scholar
  72. 72.
    Lyon AR, MacLeod KT, Zhang Y, et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci USA. 2009;106:6854–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Wei S, Guo A, Chen B, et al. T-tubule remodeling ­during transition from hypertrophy to heart failure. Circ Res. 2010;107:520–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Takeshima H, Komazaki S, Nishi M, et al. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000;6:11–22.PubMedGoogle Scholar
  75. 75.
    Kawada T, Hemmi C, Fukuda S, et al. Sarcolemmal fragility secondary to the degradation of dystrophin in dilated cardiomyopathy, as estimated by electron microscopy. Exp Clin Cardiol. 2003;8:67–70.PubMedGoogle Scholar
  76. 76.
    Rodriguez M, Cai WJ, Kostin S, et al. Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart: mechanisms of myocardial ischemic injury. J Mol Cell Cardiol. 2005;38:723–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Li J, Radice GL. A new perspective on intercalated disc organization: implications for heart disease. Dermatol Res Pract. 2010;2010:207835.PubMedGoogle Scholar
  78. 78.
    Severs NJ. The cardiac gap junction and intercalated disc. Int J Cardiol. 1990;26:137–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Kostin S, Dammer S, Hein S, et al. Connexin 43 expression and distribution in compensated and ­decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 2004;62:426–36.PubMedCrossRefGoogle Scholar
  80. 80.
    Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med. 2007;11:892–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Devaux B, Scholz D, Hirche A, et al. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J. 1997;18:470–9.PubMedGoogle Scholar
  82. 82.
    Kania G, Blyszczuk P, Eriksson U. Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med. 2009;19:247–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Valen G. Innate immunity and remodelling. Heart Fail Rev. 2011;16:71–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Maisch B, Richter A, Sandmoller A, et al. Inflam­matory dilated cardiomyopathy (DCMI). Herz. 2005;30:535–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.PubMedGoogle Scholar
  88. 88.
    De Meyer GR, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev. 2010;15:423–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85:856–66.PubMedGoogle Scholar
  90. 90.
    Meredith Jr JE, Fazeli B, Schwartz MA. The ­extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–61.PubMedGoogle Scholar
  91. 91.
    Saetersdal T, Larsen TH, Dalen H. The beta1 integrin subunit is not a specific component of the costamere domain in human myocardial cells. Histochem J. 2002;34:323–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Schwartz MA. Remembrance of dead cells past: discovering that the extracellular matrix is a cell survival factor. Mol Biol Cell. 2010;21:499–500.PubMedCrossRefGoogle Scholar
  93. 93.
    Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.PubMedGoogle Scholar
  94. 94.
    Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Hein S, Schaper J. Remodeling from compensated hypertrophy to heart failure. In: Greenberg B, editor. Cardiac remodeling mechanisms and treatment. New York/London: Taylor&Francis; 2006. p. 103–20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cardiac SurgeryKerckhoff ClinicBad NauheimGermany
  2. 2.Max-Planck-Institute for Heart and Lung ResearchBad NauheimGermany

Personalised recommendations