Skip to main content

Mechanisms Underlying Development of Cardiomyocyte Hypertrophy via Na–H Exchange Stimulation

  • Chapter
  • First Online:
  • 593 Accesses

Abstract

Na–H exchange (NHE) is the principal mechanism by which the cardiac cell extrudes protons following the development of intracellular acidosis. Although ten isoforms of NHE have now been identified, cardiac cells possess primarily the ubiquitous NHE-1 subtype. There is now strong evidence that NHE-1 contributes to chronic maladaptive myocardial responses to injury including myocardial remodelling and the antiporter likely contributes to the development of heart failure. Experimental studies using both in vitro approaches as well as animal models of heart failure have consistently demonstrated salutary effects of NHE-1 inhibitors in attenuating hypertrophy in response to various stimuli as well as inhibiting heart failure in a large number of animal models. The beneficial effects of NHE-1 inhibitors reflect direct antiremodelling/antihypertrophic effects on the heart which occur via a number of intracellular processes including diminution of intracellular sodium accumulation, prevention of mitochondrial remodelling and reduction in the calcium-dependent activation of the hypertrophic calcineurin pathway. Taken together, NHE-1 inhibition represents a potentially effective therapeutic approach for the treatment of heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Orlowski J, Grinstein S. Molecular and functional diversity of mammalian Na+/H+ exchangers In: Karmazyn M, Avkiran M, Fliegel L, editors. The sodium–hydrogen exchanger. From molecule to its role in disease. Chap. 2. Dordrecht: Kluwer; 2003. p. 17–34.

    Google Scholar 

  2. Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 2004;447:549–65.

    Article  PubMed  CAS  Google Scholar 

  3. Lee SH, Kim T, Park ES, et al. NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival. Biochem Biophys Res Commun. 2008;369:320–6.

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura N, Tanaka S, Teko Y, et al. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 2004;280:1561–72.

    Article  PubMed  Google Scholar 

  5. Karmazyn M, Gan XT, Humphreys RA, et al. The myocardial Na+–H+ exchange: structure, regulation and its role in heart disease. Circ Res. 1999;85:777–86.

    PubMed  CAS  Google Scholar 

  6. Karmazyn M, Sostaric JV, Gan XT. The myocardial Na+/H+ exchanger: a potential therapeutic target for the prevention of myocardial ischaemic and reperfusion injury and attenuation of postinfarction heart ­failure. Drugs. 2001;61:375–89.

    Article  PubMed  CAS  Google Scholar 

  7. Putney LK, Denker SP, Barber DL. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol. 2002;42:527–52.

    Article  PubMed  CAS  Google Scholar 

  8. Bianchini L, Pouyssegur J. Regulation of the Na+/H+ exchanger isoform NHE1: role of phosphorylation. Kidney Int. 1996;49:1038–41.

    Article  PubMed  CAS  Google Scholar 

  9. Leem CH, Lagadic-Gossmann D, Vaughan-Jones RD. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol. 1999;517(Pt 1):159–80.

    Article  PubMed  CAS  Google Scholar 

  10. Spitzer KW, Vaughan-Jones RD. Regulation of intracellular pH in mammalian cells. In: Karmazyn M, Avkiran M, Fliegel L, editors. The sodium–hydrogen exchanger. From molecule to its role in disease. Chap. 1. Dordrecht: Kluwer; 2003.

    Google Scholar 

  11. Wakabayashi S, Fafournoux P, Sardet S, et al. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H” sensing. Proc Natl Acad Sci USA. 1992;89:2424–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wakabayashi S, Hisamitsu T, Pang T, et al. Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J Biol Chem. 2003;278:11828–35.

    Article  PubMed  CAS  Google Scholar 

  13. Kinsella JL, Heller P, Frohlich JP. Na+/H+ exchanger: proton modifier site regulation of activity. Biochem Cell Biol. 1998;76:743–9.

    PubMed  CAS  Google Scholar 

  14. Khandoudi N, Karmazyn M. Role of sodium/hydrogen exchange in mediating the effects of endothelin-1 on the normal and ischemic and reperfused heart. Circ Res. 1994;75:369–78.

    PubMed  CAS  Google Scholar 

  15. Woo SH, Lee CO. Effects of endothelin-1 on Ca2+ signaling in guinea pig ventricular myocytes: role of protein kinase C. J Mol Cell Cardiol. 1999;31:631–43.

    Article  PubMed  CAS  Google Scholar 

  16. Matsui H, Barry WH, Livsey C, et al. Angiotensin II stimulates sodium–hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res. 1995;29:215–21.

    PubMed  CAS  Google Scholar 

  17. Gunasegaram M, Haworth RS, Hearse DJ, et al. Regulation of sarcolemmal Na+/H+ exchanger activity by angiotensin II in adult rat ventricular myocytes: opposing actions via AT1 versus AT2 receptors. Circ Res. 1999;85:919–30.

    PubMed  CAS  Google Scholar 

  18. Wallert MA, Frohlich O. α1-adrenergic stimulation of Na–H exchange in cardiac myocytes. Am J Physiol. 1992;263:C1096–102.

    PubMed  CAS  Google Scholar 

  19. Yokoyame H, Yasutake M, Avkiran M. α1-adrenergic stimulation of sarcolemmal Na+–H+ exchanger activity in rat ventricular myocytes: evidence for selective mediation by the α1Aadrenoceptor subtype. Circ Res. 1998;82:1078–85.

    Google Scholar 

  20. Sabri A, Byron KL, Samarel AM, et al. Hydrogen peroxide activates mitogen-activated protein kinases and Na+–H+ exchange in neonatal rat cardiac myocytes. Circ Res. 1998;82:1053–62.

    PubMed  CAS  Google Scholar 

  21. Wang H, Silva NL, Lucchesi PA, et al. Phosphorylation and regulation of the Na+/H+ exchanger through mitogen-activated protein kinase. Biochemistry. 1997;29:9151–8.

    Article  Google Scholar 

  22. Moor AN, Fliegel L. Protein kinase-mediated regulation of the Na+/H+ exchanger in the rat myocardium by mitogen-activated protein kinase-dependent pathways. J Biol Chem. 1999;274:22985–92.

    Article  PubMed  CAS  Google Scholar 

  23. Sisczkowski M, Ng LL. Phorbol ester activation of the rat vascular myocyte Na+/H+ exchanger isoform I. Hypertension. 1996;27:859–66.

    Google Scholar 

  24. Moor AN, Gan XT, Karmazyn M, et al. Activation of Na+/H+ exchanger-directed protein kinases in the ischemic and ischemic-reperfused rat myocardium. J Biol Chem. 2001;276:16113–22.

    Article  PubMed  CAS  Google Scholar 

  25. Cuello F, Snabaitis AK, Cohen MS, et al. Evidence for direct regulation of myocardial Na+/H+ exchanger ­isoform 1 phosphorylation and activity by 90-kDa ribosomal S6 kinase (RSK): effects of the novel and specific RSK inhibitor fmk on responses to α1-­adrenergic stimulation. Mol Pharmacol. 2007;71(3):799–806.

    Article  PubMed  CAS  Google Scholar 

  26. Snabaitis AK, D’Mello R, Dashnyam S, et al. A novel role for protein phosphatase 2A in receptor-mediated regulation of the cardiac sarcolemmal Na+/H+ exchanger NHE1. J Biol Chem. 2006;281:20252–62.

    Article  PubMed  CAS  Google Scholar 

  27. Wu ML, Tseng YZ. The modulatory effects of endothelin-1, carbachol and isoprenaline upon Na+–H+ exchange in dog cardiac Purkinje fibers. J Physiol. 1993;471:583–97.

    PubMed  CAS  Google Scholar 

  28. Ito N, Kagaya Y, Weinberg EO, et al. Endothelin and angiotensin II stimulation of Na+–H+ exchange is impaired in cardiac hypertrophy. J Clin Invest. 1997;99:125–35.

    Article  PubMed  CAS  Google Scholar 

  29. Boston DR, Koyama T, Rodriguez-Larrain J, et al. Effects of angiotensin II on intracellular calcium and contracture in metabolically inhibited cardiomyocytes. J Pharmacol Exp Ther. 1998;285:716–23.

    PubMed  CAS  Google Scholar 

  30. Mattiazi A, Perez NG, Vila-Petrof MG, et al. Dissociation between positive inotropic and alkalinizing effects of angiotensin II in feline myocardium. Am J Physiol. 1997;272:H1131–6.

    Google Scholar 

  31. Puceat M, Vassort G. Neurohumoral modulation of intracellular pH in the heart. Cardiovasc Res. 1995;29:178–83.

    PubMed  CAS  Google Scholar 

  32. Katz AM. Heart failure. Pathophysiology, molecular biology, and clinical management. Philadelphia, PA: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  33. Yamazaki T, Komuro I, Kudoh S, et al. Role of ion channels and exchanger in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res. 1998;82:430–7.

    PubMed  CAS  Google Scholar 

  34. Cingolani HE, Alvarez BV, Ennis IL, et al. Stretch-induced alkalinization of feline papillary muscle. An autocrine–paracrine system. Circ Res. 1998;83:775–80.

    PubMed  CAS  Google Scholar 

  35. Hori M, Nakatsubo B, Kagiya T, et al. The role of Na+/H+ exchange in norepinephrine-induced protein ­synthesis in neonatal cultured cardiomyocytes. Jpn Circ J. 1990;54:535–9.

    Article  PubMed  CAS  Google Scholar 

  36. Dostal DE, Baker KM. Angiotensin and endothelin: messengers that couple ventricular stretch to the Na+/H+ exchanger and cardiac hypertrophy. Circ Res. 1998;83:870–3.

    PubMed  CAS  Google Scholar 

  37. Cingolani HE. Na+/H+ exchange hyperactivity and myocardial hypertrophy: are they linked phenomena? Cardiovasc Res. 1999;44:462–7.

    Article  PubMed  CAS  Google Scholar 

  38. Baartscheer A, Schumacher CA, van Borren MM, et al. Increased Na+/H+-exchange activity is the cause of increased (Na+)i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–24.

    Article  PubMed  CAS  Google Scholar 

  39. Yokoyama H, Gunasegaram S, Harding SE, et al. Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol. 2000;36:534–40.

    Article  PubMed  CAS  Google Scholar 

  40. Schluter KD, Schafer M, Balser C, et al. Influence of pHi and creatine phosphate on α-adrenoceptor-­mediated cardiac hypertrophy. J Mol Cell Cardiol. 1998;30:763–71.

    Article  PubMed  CAS  Google Scholar 

  41. Ennis IL, Escudero EM, Console GM, et al. Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension. 2003;41:1324–9.

    Article  PubMed  CAS  Google Scholar 

  42. Chen S, Khan ZA, Karmazyn M, et al. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev. 2007;23:356–67.

    Article  PubMed  Google Scholar 

  43. Karmazyn M, Liu Q, Gan XT, et al. Aldosterone increases NHE-1 expression and induces NHE-1-dependent hypertrophy in neonatal rat ventricular myocytes. Hypertension. 2003;42:1171–6.

    Article  PubMed  CAS  Google Scholar 

  44. Young M, Funder J. Mineralocorticoid action and sodium–hydrogen exchange: studies in experimental cardiac fibrosis. Endocrinology. 2003;144:3848–51.

    Article  PubMed  CAS  Google Scholar 

  45. Hasegawa S, Nakano M, Taniguchi Y, et al. Effects of Na+–H+ exchange blocker amiloride on left ventricular remodeling after anterior myocardial infarction in rats. Cardiovasc Drugs Ther. 1995;9:823–6.

    Article  PubMed  CAS  Google Scholar 

  46. Taniguchi Y, Nakano M, Hasegawa S, et al. Beneficial effect of amiloride, a Na+–H+ exchange blocker, in a murine model of dilated cardiomyopathy. Res Commun Chem Pathol Pharmacol. 1996;92:201–10.

    CAS  Google Scholar 

  47. Yoshida H, Karmazyn M. Na+/H+ exchange inhibition attenuates hypertrophy and heart failure in 1-wk postinfarction rat myocardium. Am J Physiol. 2000;278:H300–4.

    CAS  Google Scholar 

  48. Kusumoto K, Haist JV, Karmazyn M. Na+/H+ exchange inhibition reduces hypertrophy and heart failure after myocardial infarction in rats. Am J Physiol. 2001;280:H738–45.

    CAS  Google Scholar 

  49. Chen L, Chen CX, Gan XT, et al. Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol. 2004;286:H381–7.

    CAS  Google Scholar 

  50. Aker S, Snabaitis AK, Konietzka I. Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart ­failure in rabbits. Cardiovasc Res. 2004;63:273–81.

    Article  PubMed  CAS  Google Scholar 

  51. Cingolani HE, Rebolledo OR, Portiansky EL, et al. Regression of hypertensive myocardial fibrosis by Na+/H+ exchange inhibition. Hypertension. 2003;41:373–7.

    Article  PubMed  CAS  Google Scholar 

  52. Chen L, Gan XT, Haist JV, et al. Attenuation of compensatory right ventricular hypertrophy and heart failure following monocrotaline-induced pulmonary vascular injury by the Na+–H+ exchange inhibitor cariporide. J Pharmacol Exp Ther. 2001;298:469–76.

    PubMed  CAS  Google Scholar 

  53. Pérez NG, Piaggio MR, Ennis IL, et al. Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension. 2007;49:1095–103.

    Article  PubMed  Google Scholar 

  54. Schussheim AE, Radda GK. Altered Na+–H+-exchange activity in the spontaneously hypertensive rat. J Mol Cell Cardiol. 1995;27:1475–81.

    Article  PubMed  CAS  Google Scholar 

  55. Perez NG, Alvarez BV, Camilión de Hurtado MC, et al. pHi regulation in the myocardium of the spontaneously hypertensive rat. Compensated enhanced activity of the Na+–H+ exchanger. Circ Res. 1995;77:1192–200.

    PubMed  CAS  Google Scholar 

  56. Ennis IL, Alvarez BV, Camilión de Hurtado MC. Enalapril induces regression of cardiac hypertrophy and normalization of pHi regulatory mechanisms. Hypertension. 1998;31:961–7.

    PubMed  CAS  Google Scholar 

  57. Engelhardt L, Hein U, Keller K, et al. Inhibition of Na+–H+ exchange prevents hypertrophy, fibrosis, and heart failure in β1-adrenergic receptor transgenic mice. Circ Res. 2002;90:814–9.

    Article  PubMed  CAS  Google Scholar 

  58. Chahine M, Bkaily G, Nader M, et al. NHE-1-dependent intracellular sodium overload in hypertrophic hereditary cardiomyopathy: prevention by NHE-1 inhibitor. J Mol Cell Cardiol. 2005;38:571–82.

    Article  PubMed  CAS  Google Scholar 

  59. Kilić A, Velic A, De Windt LJ, et al. Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation. 2005;112:2307–17.

    Article  PubMed  Google Scholar 

  60. Kilić A, Bubikat A, Gassner B, et al. Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodelling. Endocrinology. 2007;148:4162–9.

    Article  PubMed  Google Scholar 

  61. Tajima M, Bartunek J, Weinberg EO, et al. Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts. Circulation. 1998;98:2760–4.

    PubMed  CAS  Google Scholar 

  62. Darmellah A, Baetz D, Prunier F, et al. Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto–Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia. 2007;50:1335–44.

    Article  PubMed  CAS  Google Scholar 

  63. American Heart Association. Women and cardiovascular disease statistics. http://www.americanheart.org/downloadable/heart/1199816973854FS10WM08.pdf.

  64. Tu JV, Nardi L, Fang J, et al. Canadian Cardiovascular Outcomes Research Team. National trends in rates of death and hospital admissions related to acute myocardial infarction, heart failure and stroke, 1994–2004. CMAJ. 2009;180:E118–25

    Google Scholar 

  65. Kilić A, Javadov S, Karmazyn M. Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol. 2009;46:360–9.

    Article  PubMed  Google Scholar 

  66. Van Borren MM, Zegers JG, Baartscheer A, et al. Contribution of NHE-1 to cell shortening of normal and failing rabbit heart. J Mol Cell Cardiol. 2006;41:706–15.

    Article  PubMed  Google Scholar 

  67. Hayasaki-Kajiwara Y, Kitano Y, Iwasaki T, et al. Na+ influx via Na+/H+ exchange activates protein kinase C isozymes δ and ε in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol. 1999;31:1559–72.

    Article  PubMed  CAS  Google Scholar 

  68. Despa S, Islam MA, Weber CR, et al. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation. 2002;105:2543–8.

    Article  PubMed  CAS  Google Scholar 

  69. Gan XT, Gong XQ, Xue J, et al. Sodium–hydrogen exchange inhibition attenuates glycoside-induced hypertrophy in rat ventricular myocytes. Cardiovasc Res. 2010;85:79–89.

    Article  PubMed  CAS  Google Scholar 

  70. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20:1–22.

    Article  PubMed  CAS  Google Scholar 

  71. Javadov S, Huang C, Kirshenbaum LA, et al. NHE-1 inhibition improves impaired mitochondrial permeability transition and respiratory function during postinfarction remodelling in the rat. J Mol Cell Cardiol. 2005;38:135–43.

    Article  PubMed  CAS  Google Scholar 

  72. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233–49.

    Article  PubMed  CAS  Google Scholar 

  73. Weiss JN, Korge P, Honda HM, et al. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301.

    Article  PubMed  CAS  Google Scholar 

  74. Halestrap AP, Clarke SJ, Javadov S. Mitochondrial permeability transition pore opening during myocardial reperfusion: a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    Article  PubMed  CAS  Google Scholar 

  75. Javadov S, Purdham DM, Zeidan A, et al. NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol. 2006;291:H1722–30.

    CAS  Google Scholar 

  76. Javadov S, Choi A, Rajapurohitam V, et al. NHE-1 inhibition-induced cardioprotection against ischemia/reperfusion is associated with attenuation of the ­mitochondrial permeability transition. Cardiovasc Res. 2008;77:416–24.

    Article  PubMed  CAS  Google Scholar 

  77. Javadov S, Baetz D, Rajapurohitam V, et al. Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved ­mitochondrial integrity and decreased ­generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther. 2006;317:1036–43.

    Article  PubMed  CAS  Google Scholar 

  78. Javadov S, Rajapurohitam V, Kilić A, et al. Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol. 2011;106(1):99–109.

    Article  PubMed  CAS  Google Scholar 

  79. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;63:45–79.

    Article  Google Scholar 

  80. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63:467–75.

    Article  PubMed  CAS  Google Scholar 

  81. Bueno OF, van Rooij E, Molkentin JD, et al. Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res. 2002;53:806–21.

    Article  PubMed  CAS  Google Scholar 

  82. Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004;322:1178–91.

    Article  PubMed  CAS  Google Scholar 

  83. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.

    Article  PubMed  CAS  Google Scholar 

  84. Nakamura TY, Iwata Y, Arai Y, et al. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 2008;103:891–9.

    Article  PubMed  CAS  Google Scholar 

  85. Kilic A, Rajapurohitam V, Sandberg SM, et al. A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc Res. 2010;88:434–42.

    Article  PubMed  CAS  Google Scholar 

  86. Guo J, Gan XT, Haist JV, et al. Ginseng Inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 Inhibition and attenuation of calcineurin activation. Circ Heart Fail. 2011;4(1):79–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work originating from the author’s laboratory has been supported by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karmazyn, M. (2011). Mechanisms Underlying Development of Cardiomyocyte Hypertrophy via Na–H Exchange Stimulation. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics