Cardiolipin Metabolism in Experimental and Human Heart Failure

Chapter

Abstract

Heart failure accounts for approximately 5% of all medical admissions and is the single most common cause of hospital admissions in individuals aged 65 years and over. The biochemical mechanisms for the development of heart failure are beginning to emerge. Cardiolipin is a major mitochondrial membrane phospholipid required for the activity of key mitochondrial enzymes involved in cellular energy production. Loss of cardiolipin results in the inability of mitochondria to sustain oxidative phosphorylation. Cardiolipin metabolism is altered leading to reduction in tetralinoleoyl-cardiolipin levels in experimental animal models of heart failure and in humans. This loss in tetralinoleoyl-cardiolipin results in reduced mitochondrial function which may contribute to the development of heart failure. Thus, cardiolipin biosynthetic and remodeling enzymes may represent targets for pharmacotherapeutic modulation in both left ventricular- as well as right ventricular-mediated heart failure.

Keywords

Cardiolipin Heart failure Mitochondria Phospholipid Biosynthesis Remodeling Tafazzin Huntington disease Persistent pulmonary hypertension Hypertensive heart failure–prone rat Genetic disease Yeast artificial chromosome mouse Barth syndrome 

Notes

Acknowledgments

The author wishes to acknowledge the contribution of Dr. Harjot Saini-Chohan for Figs. 2 and 3, Dr. Shyamala Dakshinamurti for PPHN piglet hearts and Dr. Simonetta Sipione for YAC128 mouse hearts. This work was supported by a grant from the Heart and Stroke Foundation of Manitoba, the Barth Syndrome Foundation of Canada, and the Huntington Foundation of Canada. G.M.H. is a Canada Research Chair in Molecular Cardiolipin Metabolism.

References

  1. 1.
    McMurray JJ, Pfeffer MA. Heart failure. Lancet. 2005;365:1877–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Saini-Chohan H, Hatch GM. Biological actions and metabolism of currently used pharmaceutical agents for the treatment of congestive heart failure. Curr Drug Metabol. 2009;10:206–19.CrossRefGoogle Scholar
  3. 3.
    White DA. The phospholipid composition of mammalian tissues. In: Ansell GB, Hawthorne JN, Dawson RMC, editors. Form and function of phospholipids. Amsterdam: Elsevier; 1982. p. 441–82.Google Scholar
  4. 4.
    Reig J, Domingo E, Segura R, et al. Rat myocardial tissue lipids and their effect on ventricular electrical activity: influence on dietary lipids. Cardiovasc Res. 1993;27:364–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Hostetler KY. Polyglycerophospholipids: phosphatidylglycerol, di phosphatidylglyceroland bis(monoacylglycero)phosphate. In: Hawthorne JN, Ansell GB, editors. Phospholipids. Amsterdam: Elsevier; 1982. p. 215–61.Google Scholar
  6. 6.
    Hatch GM. Cardiolipin biosynthesis in the isolated rat heart. Biochem J. 1994;297:201–8.PubMedGoogle Scholar
  7. 7.
    Hatch GM. Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol. 2004;82:99–112.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoch FL. Cardiolipins and biomembrane functions. Biochim Biophys Acta. 1992;1113:71–133.PubMedGoogle Scholar
  9. 9.
    Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem. 2002;277:43553–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Hauff KD, Hatch GM. Cardiolipin metabolism and Barth Syndrome. Prog Lipid Res. 2006;45:91–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555:1–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Sparagna GC, Chicco AJ, Murphy RC, et al. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res. 2007;48:1559–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Ohtsuka T, Nishijima M, Suzuki K, et al. Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem. 1993;268:22914–9.PubMedGoogle Scholar
  16. 16.
    Yamaoka S, Urade R, Kito M. Cardiolipin molecular species in rat heart mitochondria are sensitive to essential fatty acid-deficient dietary lipids. J Nutr. 1990;120:415–21.PubMedGoogle Scholar
  17. 17.
    Petrosillo G, Ruggiero FM, DiVenosa N, et al. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Hatch GM. Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Intl J Molec Med. 1998;1:33–41.Google Scholar
  19. 19.
    Nomura K, Imai H, Koumora T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J. 2000;351:83–93.Google Scholar
  20. 20.
    Orrenius S, Zhivotovsky B. Cardiolipin oxidation sets cytochrome c free. Nat Chem Biol. 2005;1:223–32.CrossRefGoogle Scholar
  21. 21.
    Kagan VE, Tyurin V, Jiang J, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005;1:223–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Muralikrishna Adibhatla R, Hatcher J. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med. 2006;40:376–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalvez F, Schug ZT, Houtkooper RH, et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol. 2008;183:681–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res. 2008;49:1607–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Houtkooper RH, Vaz F. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65:2493–506.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng P, Hatch GM. Inhibition of cardiolipin biosynthesis in the hypoxic rat heart. Lipids. 1995;30:513–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Muders F, Elsner D. Animal models of chronic heart failure. Pharmacol Res. 2000;41:605–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Chi Y, Gupta RK. Alterations in heart and kidney membrane phospholipids in hypertension as observed by 31P nuclear magnetic resonance. Lipids. 1998;33:1023–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Carraway JW, Park S, McCune SA, et al. Comparison of irbesartan with captopril effects on cardiac hypertrophy and gene expression in heart failure-prone male SHHF/Mcc-fa(cp) rats. J Cardiovas Pharmacol. 1999;33:451–60.CrossRefGoogle Scholar
  30. 30.
    Sparagna GC, Chicco AJ, Murphy RC, et al. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res. 2007;48:1559–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Saini-Chohan HK, Holmes MG, Chicco AJ, et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res. 2009;50:1600–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Therese P. Persistent pulmonary hypertension of the newborn. Paediatr Respir Rev. 2006;7 Suppl 1:S175–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Vosatka RJ. Persistent pulmonary hypertension of the newborn. N Eng J Med. 2002;346:864.CrossRefGoogle Scholar
  34. 34.
    Berkenbosch JW, Baribeau J, Perreault T. Decreased synthesis and vasodilation to nitric oxide in piglets with hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2000;278:L276–83.PubMedGoogle Scholar
  35. 35.
    McKenzie M, Lazarou M, Thorburn DR, et al. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol. 2006;361:462–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ma L, Vaz FM, Gu L, et al. The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome. J Biol Chem. 2004;279:44394–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Daicho T, Yagi T, Abe Y, et al. Possible involve­ment of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111:33–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Walker FO. Huntington’s Disease. Lancet. 2007;369:218–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Chiu E, Alexander L. Causes of death in Huntington’s disease. Med J Aust. 1982;1:153.PubMedGoogle Scholar
  40. 40.
    Pattison JS, Sanbe A, Maloyan A, et al. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation. 2008;117:2743–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen L, Gong Q, Stice J, et al. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84:91–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu FY, McBride H, Aceham D, et al. The dynamics of cardiolipin synthesis post mitochondrial fusion. Biochim Biophys Acta (Biomembranes). 2010;1798:1577–85.CrossRefGoogle Scholar
  43. 43.
    Mihm MJ, Amann DM, Schanbacher BL, et al. Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis. 2007;25:297–308.PubMedCrossRefGoogle Scholar
  44. 44.
    Slow EJ, van Raamsdonk J, Rogers D, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genetics. 2003;12:1555–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology and Therapeutics, Biochemistry and Medical Genetics, Internal Medicine, Faculty of Medicine, Center for Research and Treatment of Atherosclerosis, Manitoba Institute of Child HealthUniversity of ManitobaWinnipegCanada

Personalised recommendations