Calcium Overloading-Induced Oxidative Stress-Mediated Cellular and Subcellular Remodeling

  • Yaser Cheema
  • Atta U. Shahbaz
  • Syamal K. Bhattacharya
  • Robert A. Ahokas
  • Yao Sun
  • Ivan C. Gerling
  • Karl T. WeberEmail author


A progressive loss of cardiomyocytes contributes to the heart’s failure as a muscular pump. This includes the necrotic death of these cells, which are replaced by fibrous tissue (vis-à-vis apoptotic cell death). In the explanted failing heart, scattered foci of fibrosis are found throughout both ventricles, representing the major component of pathologic remodeling. Further evidence on the importance of cardiomyocyte necrosis relates to elevations in serum troponins, biomarkers of cellular disintegration that appear in patients having congestive heart failure (CHF) in the absence of ischemia–infarction or renal failure. The CHF syndrome has its origins rooted in neurohormonal activation, including the adrenergic nervous and renin–angiotensin–­aldosterone systems, and secondary hyperparathyroidism. Effector hormones, including parathyroid hormone, contribute to cardiomyocyte necrosis based on a mitochondriocentric signal-transducer–effector pathway whose major components include the intracellular Ca2+ overloading-induced, oxidative stress-­mediated opening of the mitochondria inner membrane permeability transition pore. An ensuing loss of ATP and organellar degeneration account for necrotic cell death. Herein, we focus on this pathway, as it relates to various acute and chronic stressor states: isoproterenol treatment, aldosterone–salt treatment, and the cardiomyopathy of the Syrian Hamster. Cumulative insights gathered from these models lead to the inevitable recognition as to the central role of mitochondria in cellular–subcellular remodeling. Toward this end, the efficacy and safety of mitochondria-targeted pharmaceuticals and/or nutriceuticals needs to be determined.


Mitochondria Cardiomyocytes Calcium overloading Oxidative stress Neurohormones Parathyroid hormone 



This work was supported, in part, by NIH grants R01-HL73043 and R01-HL90867 (K.T.W.). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The authors have no conflicts of interest to disclose.


  1. 1.
    Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Todryk SM, Melcher AA, Dalgleish AG, Vile RG. Heat shock proteins refine the danger theory. Immunology. 2000;99:334–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89:151–63.PubMedGoogle Scholar
  5. 5.
    Ishii J, Nomura M, Nakamura Y, et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol. 2002;89:691–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuwabara Y, Sato Y, Miyamoto T, et al. Persistently increased serum concentrations of cardiac troponin in patients with acutely decompensated heart failure are predictive of adverse outcomes. Circ J. 2007;71:1047–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Peacock 4th WF, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Zairis MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol. 2009;141:284–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Löwbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J. Serum cardiac troponin T in patients ­hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest. 2004;64:667–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sukova J, Ostadal P, Widimsky P. Profile of patients with acute heart failure and elevated troponin I levels. Exp Clin Cardiol. 2007;12:153–6.PubMedGoogle Scholar
  12. 12.
    Ilva T, Lassus J, Siirilä-Waris K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail. 2008;10:772–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Sato Y, Nishi K, Taniguchi R, et al. In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol. 2009;54:221–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Miller WL, Hartman KA, Burritt MF, et al. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1715–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Allard MF, Flint JD, English JC, et al. Calcium overload during reperfusion is accelerated in isolated hypertrophied rat hearts. J Mol Cell Cardiol. 1994;26:1551–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirshenbaum LA, Hill M, Singal PK. Endogenous antioxidants in isolated hypertrophied cardiac myocytes and hypoxia-reoxygenation injury. J Mol Cell Cardiol. 1995;27:263–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Nakayama H, Chen X, Baines CP, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117:2431–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Khullar M, Al-Shudiefat AA, Ludke A, et al. Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol. 2010;88:233–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Cai L. Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications. Curr Med Chem. 2007;14:2193–203.PubMedCrossRefGoogle Scholar
  20. 20.
    Chhokar VS, Sun Y, Bhattacharya SK, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005;111:871–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Vidal A, Sun Y, Bhattacharya SK, et al. Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol. 2006;290:H286–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Afzal N, Ganguly PK, Dhalla KS, et al. Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes. 1988;37:936–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol. 1946;6:117–230.CrossRefGoogle Scholar
  24. 24.
    Fleckenstein A, Kanke J, Döring HJ, et al. Key role of Ca in the production of noncoronarogenic myocardial necroses. Recent Adv Stud Cardiac Struct Metab. 1975;6:21–32.PubMedGoogle Scholar
  25. 25.
    Lossnitzer K, Janke J, Hein B, et al. Disturbed myocardial calcium metabolism: a possible pathogenetic factor in the hereditary cardiomyopathy of the Syrian hamster. Recent Adv Stud Cardiac Struct Metab. 1975;6:207–17.PubMedGoogle Scholar
  26. 26.
    Bier CB, Rona G. Mineralocorticoid potentiation of isoproterenol-induced myocardial injury: ultrastructural equivalent. J Mol Cell Cardiol. 1979;11:961–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Rona G, Boutet M, Huttner I. Reperfusion injury. A possible link between catecholamine-induced and ischemic myocardial alterations. Adv Myocardiol. 1983;4:427–39.PubMedGoogle Scholar
  28. 28.
    Yates JC, Taam GM, Singal PK, et al. Modification of adrenochrome-induced cardiac contractile failure and cell damage by changes in cation concentrations. Lab Invest. 1980;43:316–26.PubMedGoogle Scholar
  29. 29.
    Singal PK, Forbes MS, Sperelakis N. Occurrence of intramitochondrial Ca2+ granules in a hypertrophied heart exposed to adriamycin. Can J Physiol Pharmacol. 1984;62:1239–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Palmieri GM, Nutting DF, Bhattacharya SK, et al. Parathyroid ablation in dystrophic hamsters. Effects on Ca content and histology of heart, diaphragm, and rectus femoris. J Clin Invest. 1981;68:646–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Bhattacharya SK, Crawford AJ, Pate JW. Electrocardiographic, biochemical, and morphologic abnormalities in dystrophic hamsters with cardiomyopathy. Muscle Nerve. 1987;10:168–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Bhattacharya SK, Johnson PL, Thakar JH. Reversal of impaired oxidative phosphorylation and calcium overloading in the in vitro cardiac mitochondria of CHF-146 dystrophic hamsters with hereditary muscular dystrophy. J Neurol Sci. 1993;120:180–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Singal PK, Kirshenbaum LA. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol. 1990;6:47–9.PubMedGoogle Scholar
  34. 34.
    Li Y, Johnson N, Capano M, et al. Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J. 2004;383:101–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Basso E, Fante L, Fowlkes J, et al. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem. 2005;280:18558–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Shahbaz AU, Zhao T, Zhao W, et al. Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. Am J Physiol Heart Circ Physiol. 2011;300(2):H636–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Smogorzewski M, Zayed M, Zhang YB, et al. Parathyroid hormone increases cytosolic calcium concentration in adult rat cardiac myocytes. Am J Physiol. 1993;264:H1998–2006.PubMedGoogle Scholar
  40. 40.
    Boutet M, Hüttner I, Rona G. Permeability alteration of sarcolemmal membrane in catecholamine-induced cardiac muscle cell injury. In vivo studies with fine structural diffusion tracer horse radish peroxidase. Lab Invest. 1976;34:482–8.PubMedGoogle Scholar
  41. 41.
    Benjamin IJ, Jalil JE, Tan LB, et al. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res. 1989;65:657–70.PubMedGoogle Scholar
  42. 42.
    Tan LB, Burniston JG, Clark WA, et al. Characterization of adrenoceptor involvement in skeletal and cardiac myotoxicity induced by sympathomimetic agents: toward a new bioassay for beta-blockers. J Cardiovasc Pharmacol. 2003;41:518–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Goldspink DF, Burniston JG, Ellison GM, et al. Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol. 2004;89:407–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Burniston JG, Ellison GM, Clark WA, et al. Relative toxicity of cardiotonic agents: some induce more cardiac and skeletal myocyte apoptosis and necrosis in vivo than others. Cardiovasc Toxicol. 2005;5:355–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Lathers CM, Levin RM, Spivey WH. Regional distribution of myocardial β-adrenoceptors in the cat. Eur J Pharmacol. 1986;130:111–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Myslivecek J, Nováková M, Palkovits M, et al. Distribution of mRNA and binding sites of adrenoceptors and muscarinic receptors in the rat heart. Life Sci. 2006;79:112–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Gengo PJ, Sabbah HN, Steffen RP, et al. Myocardial beta adrenoceptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol. 1992;24:1361–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Upsher ME, Weiss HR. Heterogeneous distribution of beta adrenoceptors in the dog left ventricle. J Mol Cell Cardiol. 1986;18:657–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Rushmer RF, Thal N. The mechanics of ventricular contraction; a cinefluorographic study. Circulation. 1951;4(2):219–28.PubMedGoogle Scholar
  50. 50.
    Sedmera D, Reckova M, Bigelow MR, et al. Developmental transitions in electrical activation ­patterns in chick embryonic heart. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:1001–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Buchalter MB, Rademakers FE, Weiss JL, et al. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res. 1994;28:629–35.PubMedCrossRefGoogle Scholar
  52. 52.
    Mathew BM, Kumar S, Ahmad MS, et al. A temporal profile of myocardial zinc changes after isoproterenol induced cardiac necrosis. Jpn Circ J. 1978;42:353–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Ahmad M, Salahuddin, Mathew BM, et al. Effect of extent of myocardial damage on the behavior of myocardial zinc in albino rats. Adv Myocardiol. 1980;2:171–6.Google Scholar
  54. 54.
    McIntosh R, Lee S, Ghio AJ, et al. The critical role of intracellular zinc in adenosine A2 receptor activation induced cardioprotection against reperfusion injury. J Mol Cell Cardiol. 2010;49:41–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Chanoit G, Lee S, Xi J, et al. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3β. Am J Physiol Heart Circ Physiol. 2008;295:H1227–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee S, Chanoit G, McIntosh R, et al. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol. 2009;297:H569–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Gandhi MS, Deshmukh PA, Kamalov G, et al. Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2008;52:245–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Kamalov G, Deshmukh PA, Baburyan NY, et al. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2009;53:414–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Chvapil M, Owen JA. Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol. 1977;9:151–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Singal PK, Kapur N, Dhillon KS, et al. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol. 1982;60:1390–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Singal PK, Dhillon KS, Beamish RE, et al. Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest. 1981;44:426–33.PubMedGoogle Scholar
  62. 62.
    Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985;17:291–306.PubMedCrossRefGoogle Scholar
  63. 63.
    Zielen P, Klisiewicz A, Januszewicz A, et al. Pheochromocytoma-related ‘classic’ takotsubo cardiomyopathy. J Hum Hypertens. 2010;24:363–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Gastwirth VG, Yang HS, Steidley DE, et al. Dobutamine stress-induced cardiomyopathy in an orthotopic heart transplant patient. J Heart Lung Transplant. 2009;28:968–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Margey R, Diamond P, McCann H, et al. Dobutamine stress echo-induced apical ballooning (Takotsubo) syndrome. Eur J Echocardiogr. 2009;10:395–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nykamp D, Titak JA. Takotsubo cardiomyopathy, or broken-heart syndrome. Ann Pharmacother. 2010;44:590–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res. 1991;69:107–15.PubMedGoogle Scholar
  68. 68.
    Darrow DC, Miller HC. The production of cardiac lesions by repeated injections of desoxycorticosterone acetate. J Clin Invest. 1942;21:601–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas M, Vidal A, Bhattacharya SK, et al. Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone. Am J Physiol Heart Circ Physiol. 2007;293:H2361–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart. Role of oxidative stress. Am J Pathol. 2002;161:1773–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Brilla CG, Pick R, Tan LB, et al. Remodeling of the rat right and left ventricle in experimental hypertension. Circ Res. 1990;67:1355–64.PubMedGoogle Scholar
  72. 72.
    Fleckenstein A, Frey M, Fleckenstein-Grun G. Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J. 1983;4(Suppl H):43–50.PubMedGoogle Scholar
  73. 73.
    Ahokas RA, Sun Y, Bhattacharya SK, et al. Aldosteronism and a proinflammatory vascular phenotype. Role of Mg2+, Ca2+ and H2O2 in peripheral blood mononuclear cells. Circulation. 2005;111:51–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Ahokas RA, Warrington KJ, Gerling IC, et al. Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ Res. 2003;93:e124–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Chhokar VS, Sun Y, Bhattacharya SK, et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287:H2023–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Rampe D, Lacerda AE, Dage RC, et al. Parathyroid hormone: an endogenous modulator of cardiac calcium channels. Am J Physiol. 1991;261(6 Pt 2):H1945–50.PubMedGoogle Scholar
  77. 77.
    Perna AF, Smogorzewski M, Massry SG. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int. 1989;36:453–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Massry SG, Smogorzewski M. Mechanisms through which parathyroid hormone mediates its deleterious effects on organ function in uremia. Semin Nephrol. 1994;14:219–31.PubMedGoogle Scholar
  79. 79.
    Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal. 2005;7:1302–14.PubMedCrossRefGoogle Scholar
  80. 80.
    Palty R, Silverman WF, Hershfinkel M, et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA. 2010;107:436–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Kuo TH, Zhu L, Golden K, et al. Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy. Mol Cell Biochem. 2002;238:119–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Kamalov G, Ahokas RA, Zhao W, et al. Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol. 2010;298:H385–94.PubMedCrossRefGoogle Scholar
  83. 83.
    Zia AA, Kamalov G, Newman KP, et al. From aldosteronism to oxidative stress: the role of excessive intracellular calcium accumulation. Hypertens Res. 2010;33(11):1091–101.PubMedCrossRefGoogle Scholar
  84. 84.
    Crawford AJ, Bhattacharya SK. Excessive intracellular zinc accumulation in cardiac and skeletal muscles of dystrophic hamsters. Exp Neurol. 1987;95:265–76.PubMedCrossRefGoogle Scholar
  85. 85.
    Bhattacharya SK, Palmieri GM, Bertorini TE, et al. The effects of diltiazem in dystrophic hamsters. Muscle Nerve. 1982;5:73–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Johnson PL, Bhattacharya SK. Regulation of membrane-mediated chronic muscle degeneration in dystrophic hamsters by calcium-channel blockers: diltiazem, nifedipine and verapamil. J Neurol Sci. 1993;115:76–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Fedelesova M, Dhalla NS. High energy phosphate stores in the hearts of genetically dystrophic hamsters. J Mol Cell Cardiol. 1971;3:93–102.PubMedCrossRefGoogle Scholar
  88. 88.
    Bhattacharya SK, Johnson PL, Thakar JH. Reversal of impaired oxidative phosphorylation and calcium overloading in the skeletal muscle mitochondria of CHF-146 dystrophic hamsters. Mol Chem Neuropathol. 1998;34:53–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Millay DP, Sargent MA, Osinska H, et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med. 2008;14:442–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yaser Cheema
    • 1
  • Atta U. Shahbaz
    • 1
  • Syamal K. Bhattacharya
    • 1
  • Robert A. Ahokas
    • 2
  • Yao Sun
    • 1
  • Ivan C. Gerling
    • 3
  • Karl T. Weber
    • 1
    Email author
  1. 1.Division of Cardiovascular Diseases, Department of MedicineUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of Obstetrics & GynecologyUniversity of Tennessee Health Science CenterMemphisUSA
  3. 3.Division of Endocrinology, Department of MedicineUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations