System Integration

Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)


A microsystem is a collection of integrated devices that contains MEMS (sensors, actuators, and timing devices), electronics (control, sense, and data processing), communication (wired or wireless), and a power source. Figure 6.1 schematically illustrates a complete autonomous microsystem. Realization of all these components into a single system is rather complex. Several integration approaches have been used or proposed for conventional microsystems. Application requirements, performance advantages, manufacturability, and cost advantages drive which integration route is ultimately used.


Fuel Cell Harsh Environment Gallium Nitride Piezoelectric Energy Harvester Monolithic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patil A, Fu XA, Neudeck P, Beheim G, Mehregany M, Garverick G (2009). Silicon Carbide Differential Amplifiers for High-Temperature Sensing.Materials Science Forum 600-603:1083–1086CrossRefGoogle Scholar
  2. 2.
    Franke AE, Heck JM, King TJ, Howe RT (2003). Polycrystalline Silicon–Germanium Films for Integrated Microsystems. Journal of Microelectromechanical Systems 12(2):160–171CrossRefGoogle Scholar
  3. 3.
    Kulite Semiconductor Products Inc.USA.
  4. 4.
    Fedder GK, Howe RT, King Liu T-J, Quévy EP (2007). Technologies for Cofabricating MEMS and Electronics. Proceedings of the IEEE 96(2):306–322CrossRefGoogle Scholar
  5. 5.
    Soloviev SI, Gao Y, Sudarshan TS (2000). Doping of 6H-SiC by Selective Diffusion of Boron. Applied Physics Letters 77(24):4004–4006CrossRefGoogle Scholar
  6. 6.
    Brand O (2006). Microsensor Integration Into Systems-on-Chip. Proceedings of the IEEE 94(6):1160–1176CrossRefGoogle Scholar
  7. 7.
    M. A. Mignardi (1998). BFrom ICś to DMDś,Texas Instruments Technical Jornal 15(3):56–63.Google Scholar
  8. 8.
    BOSCH GMBH, Germany.
  9. 9.
    Freescale Semiconductor Inc. USA.
  10. 10.
    Smith HJ, Montague S, Sniegowski JJ, Murray JR, McWhorter PJ (1995). Embedded Micromechanical Devices for the Monolithic Integration of MEMS with CMOS. Proceedings of 1995 IEDM:609–612Google Scholar
  11. 11.
    Yasaitis J, Judy M, Brosnihan T, Garone P, Pokrovskiy N, Sniderman N, Limb S, Howe RT, Boser B, Palaniapan M, Jiang X, Bhave S (2003). Amodular process for integrating thick polysilicon MEMS devices with sub-micron CMOS. Proceedings of SPIE 4979:145–154CrossRefGoogle Scholar
  12. 12.
    Lemkin M, Juneau T, Clar W, Roessig T Brosnihan T (1999). A Low-noise Digital Accelerometer Integrated Using SOI-MEMS Technology.Transducers 99, Sendai, Japan, June 7-10:1292–1297Google Scholar
  13. 13.
    Analog Devices Inc. USA.
  14. 14.
    Candler RN, Woo-Tae Park W-T, Li H, Yama G, Partridge A, Lutz M, Kenny T.W (2003). Single wafer encapsulation of MEMS devices. IEEE Transactions on Advanced Packaging 26(3):227–232CrossRefGoogle Scholar
  15. 15.
    Messana MW, Graham AB, Yoneoka S, Howe RT, Kenny TW (2010). Packaging of Large Lateral Deflection MEMS Using a Combination of Fusion Bonding and Epitaxial Reactor Sealing. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:336–339Google Scholar
  16. 16.
    Bustillo JM, R. T. Howe RT, Muller RS (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE 86(8):1552–1574Google Scholar
  17. 17.
    Infineon Technologies AG. Germany.
  18. 18.
    Fu XA, J. Dunning J, Zorman CA, Mehregany M (2004). Development of a High-Throughput LPCVD Process for Depositing Low Stress Poly-SiC. Materials Science Forum 457-460:305–308Google Scholar
  19. 19.
    Okojie R, Ned A, Kurtz A, Carr W (1996). 6H-SiC pressure sensors for high temperature applications. Proceeding of 9th Annual International Workshop Microelectromechanical Systems, M. Allen and M. Reed, Eds., San Diego, CA, Feb. 1115 1996:146–149Google Scholar
  20. 20.
    Okojie RS, Lukco D, Chen YL, Spry DJ (2002). Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600  ∘ C. Journal of Applied Physics 91:6553–6559CrossRefGoogle Scholar
  21. 21.
    Kuchuk AV, Guziewicz M, Ratajczak R, Wzorek M, Kladko VP, Piotrowska A ( 2009). Thermal degradation of Au/Ni2Si/n-SiC ohmic contacts under different conditions. Materials Science and Engineering B 165:38–41CrossRefGoogle Scholar
  22. 22.
    Virshup A, Porter LM, Lukco D, Buchholt T K, Hultman L, Spetz AL (2009). Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors. Journal of Electronic Materials 38 (4):569–573CrossRefGoogle Scholar
  23. 23.
    Cook-Chennault KA, Thambi N, Sastry AM (2008). Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures 17:043001CrossRefGoogle Scholar
  24. 24.
    Dudney N (2008).Thin Film Micro-Batteries. The Electrochemical Society Interface. Fall 2008: 44–48Google Scholar
  25. 25.
    Excellatron Solid State, LLC. USA.
  26. 26.
    Front Edge Technology, Inc. USA.
  27. 27.
    NanoMarkets, LC, USA.
  28. 28.
    DOE Hydrogen Program. USA.
  29. 29.
    Dyer CK (2002). Fuel cells for portable applications. Journal of Power Sources 106:31–34CrossRefGoogle Scholar
  30. 30.
    MTI MicroFuel Cells. USA.
  31. 31.
    Evans A, Bieberle-Htter A, Rupp JLM, Gauckler LJ (2009). Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources 194:119–129CrossRefGoogle Scholar
  32. 32.
    Bonta PVS, OŃeal CB, Muthusami S (2005). Micro fuel cell technologies, advancements, and challenges. Proceedings of Feulcell 2005:673–682Google Scholar
  33. 33.
    Morse JD (2007). Micro-fuel cell power sources. International Journal of Energy Research 31:576–602CrossRefGoogle Scholar
  34. 34.
    Fernandez-Pello AC (2002). Micropower Generation Using Combustion:Issues and Approach. Proceedings of the Combustion Institute (29):883–899CrossRefGoogle Scholar
  35. 35.
    Swanger M, Walther DC, Fernandez-Pello AC, Pisano AP (2004). Small-scale rotary engine power system development status. Western States Section / Combustion Institute, Spring 2004, Davis, CA. WSS-04S-9Google Scholar
  36. 36.
    Epstein AH, Senturia SD, Anathasuresh G, Ayon A, Breuer K, Chen KS, Ehrich FE, Gauba G, Ghodssi R, Groshenry C, Jacobson S, Lang JH, Lin CC, Mehra A, Mur Miranda JO, Nagle S, Orr DJ, Piekos E, Schmidt MA, Shirley G, Spearing SM, Tan CS, Tzeng Y-S, Waitz IA (1997). Power MEMS and Microengines. Proceedings of the IEEE Transducers 97 Conference, Chicago, IL, June 1997:753–756Google Scholar
  37. 37.
    Li H, Lal A, Blanchard J, Henderson D (2002). Self-reciprocating radioisotope-powered cantilever. Journal of Applied Physics 92 (2): 1122–1127CrossRefGoogle Scholar
  38. 38.
    Guo H Lal A (2003). Nanopower Betavoltaic Microbatteries. Digest of Technical Papers, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Transducers03:36–39Google Scholar
  39. 39.
    Sims PE, Dinetta LC, Dugancavanagh K, Goetz MA (1995). Gallium Phosphide Energy Converters. Proceedings of the XIV Space Photovoltaic Research and Technology Conference (SPRAT XIV), edited by G. Landis NASA CP-10180:231–236Google Scholar
  40. 40.
    Pool FS, Stella PM, Anspaugh B (1989), GaP betavoltaic cells as a power source. Space Photovoltaic Research and Technology1989, edited by G. Landis NASA CP 3107:359–370Google Scholar
  41. 41.
    Andreev VM, Kevetsky AG, Kaiinovsky VS, Khvostikov VP, Larionov VR, Rumyantsev VD, Shvarts MZ, Yakimova EV, Ustinov VA (2001). Tritium-powered betacells based on AlxGa1-xAs. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000:1253–1256Google Scholar
  42. 42.
    Deus S (2001). Tritium-powered betavoltaic cells based on amorphous silicon. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000:1246–1249Google Scholar
  43. 43.
    Sun W, Kherani NP, Hirschman KD, Gadeken LL, Fauchet PM (2005). A Three-Dimensional Porous Silicon pn Diode for Betavoltaics and Photovoltaics. Advanced Materials 17(10):1230–1233CrossRefGoogle Scholar
  44. 44.
    Shreter YS, Rebane TT, Bochkareva NI (2002). Polymers, Phosphers, and Voltaics for Radioisotope Microbatteries, edited by K. E. Bower, Y.A. Barbanel, Y. G. Shreter, and G. W. Bohnert CRC Press, Boca Raton, FL:365–388Google Scholar
  45. 45.
    Olsen LC (1974). Advanced betavoltaic power sources. Proceedings of the 9th Intersociety Energy Conversion Engineering Conference, edited by Liberman AR, Osmeyer WE, American Society of Mechanical Engineers, New York:754–762Google Scholar
  46. 46.
    Lebedev AA, Kozlovski VV, Strokan NB, Davydov DV, Ivanov AM, Strel’chuk AM, Yakimova R (2002). Radiation Hardness of Wide-Gap Semiconductors (Using the Example of Silicon Carbide). Semiconductors 36(11):1270–1275CrossRefGoogle Scholar
  47. 47.
    Chandrashekhar MVS, Duggirala R, Spencer MG, Lal A (2007). 4H SiC betavoltaic powered temperature transducer. APPLIED PHYSICS LETTERS 91:053511CrossRefGoogle Scholar
  48. 48.
    Eiting CJ, Krishnamoorthy V, Rodgers S, George T, Robertson JD, Brockman J (2006). Demonstration of a radiation resistant, high efficiency SiC betavoltaic APPLIED PHYSICS LETTERS 88:064101Google Scholar
  49. 49.
    Lee JB, Chen Z, Allen MG, Rohatgi A, Arya R (1995).A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply.Journal of Microelectromechanical Systems 4(3):102–108Google Scholar
  50. 50.
    Bellew CL, Hollar S, Pister KSJ (2003).An SOI process for fabrication of solar cells, transistors and electrostatic actuators. International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers03, Proceedings of the IEEE Transducers 03 Conference, Chicago, IL, June 2003 (2):1075–1078Google Scholar
  51. 51.
    Landis GA (2005). High-Temperature Solar Cell Development. NASA/CP—2005-213431:241–247Google Scholar
  52. 52.
    Ismail BI, Ahmed WH (2009). Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents on Electrical Engineering 2:27–39CrossRefGoogle Scholar
  53. 53.
    Rowe DM (2006). Themoelectric Waste Heat Recovery as a Renewable Energy Source. International Journal of Innovations in Energy Systems and Power 1(1):13–23Google Scholar
  54. 54.
    Venkatasubramanian R, Siivola E, Colpitts T, OQ́uinn B (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413 (6856):597–602Google Scholar
  55. 55.
    Lee J, M. I. Lei MI, S. Rajgopal S, Mehregany M (2009). Thermoelectric Characterizations of N-Type Polycrystalline Silicon Carbide and Comparison with Conventional Thermopiles. Transducers 2009:1861–1864Google Scholar
  56. 56.
    Xie J, Lee C, Wang M-F, Liu Y Feng H (2009). Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. Journal of Micromechanics and Microengineering 19:125029CrossRefGoogle Scholar
  57. 57.
    Wang XH, Yamamoto A, Eguchi K, Obara H, Yoshida T (2003). Thermoelectric properties of SiC thick films deposited by thermal plasma physical vapor deposition. Science and Technology of Advanced Materials:167–172Google Scholar
  58. 58.
    Micropelt GmbH, Germany.
  59. 59.
    Hi-Z Technology, Inc. USA.
  60. 60.
    Beeby SP, Tudor MJ, White NM (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17:R175–R195CrossRefGoogle Scholar
  61. 61.
    Nye J F (1957). Physical Properties of Crystals. Oxford University Press, First EditionzbMATHGoogle Scholar
  62. 62.
    Priya S, Inman DJ (2009). Energy harvesting Technologies, Springer-Verlag, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  63. 63.
    Muralt P, Marzenck M, Belgacem B, Calame F, Basrour S (2009). Vibration Energy Harvesting with PZT Micro Device. Procedia Chemistry 1:1191–1194CrossRefGoogle Scholar
  64. 64.
    Piazza G, Stephanou PJ, Wijesundara MBJ, Pisano AP (2005). Single-chip multiple-frequency filters based on contour-mode aluminum nitride piezoelectric micromechanical resonators. Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers, TRANSDUCERS 05:2065–2068Google Scholar
  65. 65.
    Stephanou PJ, Piazza G, White CD, Wijesundara MBJ, Pisano AP (2007). Piezoelectric aluminum nitride MEMS annular dual contour mode filter. Sensors and Actuators A-Physical A134(1):151–162Google Scholar
  66. 66.
    Avago Technologies. USA.
  67. 67.
    Cimalla V, Pezoldt J, Ambacher O (2007). Group III nitride and SiC based MEMS and NEMS: materials properties,technology and applications. Journal of Physsics D: Applied Physics 40:6386–6434CrossRefGoogle Scholar
  68. 68.
    Mide Engineering Technologies. USA.
  69. 69.
    Beeby SP, Tudor MJ, Torah RN, Roberts S, OĎonnell T, Roy S (2007). Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies 13:1647–1653Google Scholar
  70. 70.
    Perpetuum Ltd, UK.
  71. 71.
    Roundy S, Wright PK, Pister KSJ (2002). Micro-electrostatic Vibration to Electricity Converters. ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana 17-22, 2002. IMECE2002-34309Google Scholar
  72. 72.
    Miranda JOM (2004). Electrostatic Vibration to Electric Energy Conversion. PhD Thesis, Massachusetts Institute of Technology, Cambridge MAGoogle Scholar
  73. 73.
    Roundy S, Wright PK, Rabaey J (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26:1131–1144CrossRefGoogle Scholar
  74. 74.
    Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Jan M. Rabaey JM, Wright PK, Sundararajan V (2005). Improving Power Output for Vibration-Based Energy Scavengers. PERVASIVE computing 4(1):28–36Google Scholar
  75. 75.
  76. 76.
    Von JA, Najafi K (1997). On-Chip Coils With Integrated Cores For Remote Inductive Powering Of Integrated Microsystems. Transducers 97, lnternatimal Coriference on Solid-state Sensors and Actuators Chicago, June 16-19, 1997: 999-1002Google Scholar
  77. 77.
    Suster M, Chaimanonart N, Guo J, Ko WH, Young DJ (2005). Remote-Powered High-Performance Strain Sensing Microsystem. 18th IEEE International Conference on Micro Electro Mechanical Systems MEMS 2005:255-258Google Scholar
  78. 78.
    Arms SW, Townsend CP, Churchill DL, Galbreath JH, Mundell SW (2005). Power Management for Energy Harvesting Wireless Sensors. SPIE Intĺ Symposium on Smart Structures & Smart MaterialsGoogle Scholar
  79. 79.
    Smith S, Tang TB, Terry JG, Stevenson JT, Flynn BW, Reekie HM, Murray AF, Gundlach AM, Renshaw D, Dhillon B, Ohtori A, Inoue Y, Walton AJ (2007). Miniaturised Drug Delivery System with Wireless Power Transfer and Communication. IET Nanobiotechnology 1(5):80–86CrossRefGoogle Scholar
  80. 80.
    Wang Y, Jia Y, Chen Q, Wang Y (2008). A Passive Wireless Temperature Sensor for Harsh Environment Applications. Sensors 8:7982-7995CrossRefGoogle Scholar
  81. 81.
    Neudeck PG, Spry DJ, Chen L-Y, Chang CW, Beheim GM, Okojie RSO, Evans LJ, Meredith RD, Ferrier TL, Krasowski MJ, Prokop NF (2009). Prolonged 500 C Operation of 6H-SiC JFET Integrated Circuitry. Materials Science Forum Vols. 615-617 (2009): 929-932CrossRefGoogle Scholar
  82. 82.
    Chen LY, Spry DJ, Neudeck PG, in: Proc. 2006 IMAPS International High Temperature Electronics Conference, Santa Fe, NM, 2006 (International Microelectronics and Packaging Society, Washington, DC, 2006: 240Google Scholar
  83. 83.
    Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica Status Solidi A:1–17Google Scholar
  84. 84.
    Myers DR, Cheng KB, Jamshidi B, Azevedo RG, Senesky DG, Chen L, Mehregany M, Wijesundara MBJ, A. P. Pisano AP (2009). Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. Journal of Micro/Nanolithography. MEMS MOEMS 8(2):021116Google Scholar
  85. 85.
    Brown TG, Davis B, Hepner D, Faust J, Myers C, Muller P, Harkins T (2001). Strap-Down Microelectromechanical (MEMS) Sensors for High-G Munition Applications. IEEE Transactions on Magnetics 37(1):336-342CrossRefGoogle Scholar
  86. 86.
    Azevedo RG, Jones DJ, Jog AV, Jamshidi B, Myers DR, Chen L, Fu X-A, Mehregany M, Wijesundara MBJ, Pisano AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors Journal 7(4):568-576CrossRefGoogle Scholar
  87. 87.
    Atwell AR, Okokie RS, Kornegay KT, Roberson SL, Beliveau A (2003). Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sensors and Acutators A 104:11–18CrossRefGoogle Scholar
  88. 88.
    Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)Google Scholar
  89. 89.
    Duboz J-Y (1999). GaN as Seen by the Industry. Physica status solida (a) 176:5–14CrossRefGoogle Scholar
  90. 90.
    Strite S, Morko H (1992). GaN, AIN, and InN: A review. Journal of Vacuum Science and Technology 10(4):1237–1266CrossRefGoogle Scholar
  91. 91.
    Yonenaga I (2001).Thermo-mechanical stability of wide-bandgap semiconductors: high temperature hardness of SiC, AlN, GaN, ZnO and ZnSe. Physica B 308–310:1150–1152CrossRefGoogle Scholar
  92. 92.
    Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, Abernathy CR, Lin J, Chu SNG (2004). GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, Journal of Physics: Condense Matter 16:R961–R994CrossRefGoogle Scholar
  93. 93.
    Lv J, Yang Z, Yan G, Lin W, Cai Y, Zhang B, Chen KJ (2009). Fabrication of Large-Area Suspended MEMS Structures Using GaN-on-Si Platform. IEEE Electron Device Letters 30 (10):1045-1047CrossRefGoogle Scholar
  94. 94.
    Cree Inc. USA.
  95. 95.
    Hamada K (2009). Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices. Material Science Forum 600-603:889-893CrossRefGoogle Scholar
  96. 96.
    Rebello NS, Shoucair FS, Palmou JW (1996). 6H silicon carbide MOSFET- modelling for high temperature analogue integrated circuits (25-500  ∘ C). IEEE Proceedings of Circuits Device Systems 143(2):115–122zbMATHCrossRefGoogle Scholar
  97. 97.
    Spry D, Neudeck P, Okojie R, Chen LY, Beheim G, Meredith R, Mueller W, Ferrier T (2004). Electrical Operation of 6H-SiC MESFET at 500  ∘ C for 500 Hours in Air Ambient. IMAPS International High Temperature Electronics Conference, Santa Fe, NMGoogle Scholar
  98. 98.
    Zorman CA, Rajgopal S, Fu XA, Jezeski R, Melzak J, Mehregany M (2002). Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si(100) Wafers in a Large-Volume LPCVD Furnace. Electrochemical and Solid-State Letters 5(10):G99–G101CrossRefGoogle Scholar
  99. 99.
    Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Socciety 151:C210–C214CrossRefGoogle Scholar
  100. 100.
    Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology. IEEE Senssors Journal 4(4):441–448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations