Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)


Packaging is typically required to provide some level of hermeticity to the sensor and electronics. Without this protection, the sensor or electronics performance would degrade or drift, aliasing the output characteristics and potentially leading to premature failure of the device. These issues are compounded for harsh environment applications. Highly corrosive media require highly corrosion resistant materials be used for packaging, limiting the available material set that can be used. High temperature environments increase the rate of corrosion and diffusion as well as can decrease fatigue life or may simply exceed the melting point or glass transition point of certain common packaging materials. It also can introduce significant internal stresses due to mismatch in thermal expansion rates of the various materials inside the package. High pressure and high shock environments additionally require components be properly sized or a different mechanical topology implemented so that they can survive the high mechanical forces encountered.


Porous Silicon Aluminum Nitride Device Layer Lead Frame Anodic Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tummala RR, Rynaszewski EJ (1997). Microelectronics Packaging Handbook, Part II: Semiconductor Packaging. Springer. ISBN: 0412084317Google Scholar
  2. 2.
    Hoya Corporation, Optics Division, corporate website:
  3. 3.
    Tong QY, Lee TH, Werner P, Gosele U (1997). Fabrication of Single Crystalline SiC Layer on High Temperature Glass. J. Electrochem. Soc. 144:L111–L113CrossRefGoogle Scholar
  4. 4.
    Tudryn CD (2004). Characterization of Anodic Bonding. Masters Thesis, Department of Mechanical Engineering and Material Science, Massachusetts Institute of Technology.Google Scholar
  5. 5.
    Di Cioccio L, Tiec YL, Letertre F, Jaussaud C, Bruel M (1996). Silicon Carbide on insulator formation using the Smart Cut Process. Electronics Letters. 32:1144–1145.CrossRefGoogle Scholar
  6. 6.
    Sparks D, Queen G, Weston R, Woodward G, Putty M, Jordan L, Zarabadi S, Jayakar K (2001). Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. J. Micromechanics and Microengineering 11(6):630–634CrossRefGoogle Scholar
  7. 7.
    Shoaf SE, Feinerman AD (1994). Aligned Au-Si eutectic bonding of silicon structures. J. Vac. Sci. Technol. 12:19–23CrossRefGoogle Scholar
  8. 8.
    Cheng Y, Hsu W, Najafi K, Nguyen C-T, Lin L (2002). Vacuum packaging technology using localized aluminum/silicon-to-glass bonding. JMEMS 11:556–565Google Scholar
  9. 9.
    Kim S, Seo YH, Cho Y, Kim GH, Bu JU (2003). Fabrication and characterization of a low-temperature hermetic MEMS package bonded by a closed loop AuSn solder-line. Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 19-23, 2003:614–617Google Scholar
  10. 10.
    Baggerman AFJ, Schwarzbach D (1998). Solder-jetted eutectic PbSn bumps for flip-chip. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B: Advanced Packaging, 21:371–381CrossRefGoogle Scholar
  11. 11.
    Cheng YT, Lin L, Najafi K (1999). Localized bonding with PSG or indium solder as intermediate layer. Proceedings of the 12th IEEE Int. Conf. MEMS, Jan 17-21, 1999:285–289Google Scholar
  12. 12.
    Maharbiz MM, Cohn MB, Howe RT, Horowitz R, Pisano AP (1999). Batch micropackaging by compression-bonded wafer-wafer transfer. 12th IEEE Int. Conf. MEMS, Jan 17-21, 1999:482–489Google Scholar
  13. 13.
    Heck JM (2001). Polycrystalline silicon germanium for fabrication, release, and packaging of microelectromechanical systems. Ph.D Thesis, Applied Science and Technology, University of California, Berkeley.Google Scholar
  14. 14.
    Lin L, Howe RT, Pisano AP (1998). Microelectromechanical filters for signal processing. JMEMS 7:286–294Google Scholar
  15. 15.
    Stark BH, Najafi K (2004). A low-temperature thin-film electroplated metal vacuum package. JMEMS 13:147–157Google Scholar
  16. 16.
    Candler RN, Park WT, Li HM, Yama G, Partridge A, Lutz M, Kenny TM (2003). Single Wafer Encapsulation of MEMS Devices. IEEE Transactions on Advanced Packaging 26(3):227–232CrossRefGoogle Scholar
  17. 17.
    Höchst A, Scheuerer R, Stahl H, Fischer F, Metzger L, Reichenbach R, Lärmer F, Krönmuller S, Watcham S, Rusu C, Witvrouw A, Gunn R (2004). Stable thin film encapsulation of acceleration sensors using polycrystalline silicon as sacrificial and encapsulation layer. Sensors and Actuators A 114(2-3):355-361CrossRefGoogle Scholar
  18. 18.
    Monajemi P, Joseph P, Kohl PA, Ayazi F (2006). Characterization of a Polymer-Based MEMS Packaging Technique. Proc. IEEE Advanced Packaging Materials, Atlanta, GA, Mar. 2006:139–144Google Scholar
  19. 19.
    Partridge A, Lutz M, Kim B, Hopcroft M, Candler RN, Kenny TW, Petersen K, Esashi M (2010). MEMS Resonators: Getting the Packaging Right. Semicon Japan 2005.Google Scholar
  20. 20.
    Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu, XA, Mehregany, M, Wijesundara, MBJ, Pisano, AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors, 7(4):568–576CrossRefGoogle Scholar
  21. 21.
    Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Transformer coupled plasma etching of 3C-SiC films using fluorinatedchemistry for microelectromechanical systems applications. Journal of Vacuum Science Technology B 22(2):513–518CrossRefGoogle Scholar
  22. 22.
    Tanaka S, Rajanna K, Abe T, Esashi M (2001). Deep Reactive Ion Etching of Silicon Carbide. J. Vac. Sci. Technol. B 19:2173–2177CrossRefGoogle Scholar
  23. 23.
    Lazar M, Vang H, Brosselard P, Raynaud C, Cremillieu P, Leclercq J-L, Descamps A, Scharnholz S, Planson D (2006). Deep SiC etching with RIE, Superlattices and Microstructures, E-MRS 2006 Symposium S 40(4-6):388–392Google Scholar
  24. 24.
    Jones DG, Pisano AP (2010). Aluminum nitride as a masking material for the plasma etching of silicon carbide structures. IEEE 23rd International Conference on Micro Electro Mechanical Systems, Hong Kong, Jan. 24-28:352–355Google Scholar
  25. 25.
    Azevedo RG (2007). Silicon Carbide Micro-extensometers for Harsh Environments. Dissertation, Department of Mechanical Engineering, University of California, Berkeley.Google Scholar
  26. 26.
    Jones DG, Azevedo RG, Chan M, Pisano AP, Wijesundara MBJ (2007). Low temperature ion beam sputter deposition of amorphous silicon carbide for wafer-level encapsulation. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:275–278Google Scholar
  27. 27.
    Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ (2008). Application of PECVD a-SiC Thin-Film Layer for Encapsulation of Microstructures. 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors:609–612Google Scholar
  28. 28.
    Messana MW, Graham AB, Yoneoka S, Howe RT, Kenny TW (2010). Packaging of Large Lateral Deflection MEMS Using a Combination of Fusion Bonding and Epitaxial Reactor Sealing. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:336–339Google Scholar
  29. 29.
    Rajgopal S, Zula D, Garverick S, Mehregany M (2009). A Silicon Carbide Accelerometer for Extreme Environment Applications. Materials Science Forum 600-603:859–862CrossRefGoogle Scholar
  30. 30.
    Yeh R (2001). Articulated mechanisms and electrostatic actuators for autonomous microrobots. Ph.D dissertation, University of California, Berkeley, Deparment of Electrical EngineeringGoogle Scholar
  31. 31.
    Yoneoka S, Roper CS, Candler RN, Chandorkar SA, Graham AB, Provine J, Maboudian R, Howe RT, Kenny TW (2010). Characterization of encapsulated micromechanical resonators sealed and coated with polycrystalline SiC. JMEMS 19(2):357–366Google Scholar
  32. 32.
    Roper CS, Candler R, Yoneoka S, Kenny T, Howe RT, Maboudian R (2009). Simultaneous wafer-scale vacuum encapsulation and microstructure cladding with LPCVD polycrystalline 3C-SiC. Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, June 21-25, 2009:1031-1034Google Scholar
  33. 33.
    Marek J (2007). MEMS Technology – From Automotive to Consumer. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:59–60Google Scholar
  34. 34.
    Dougherty GM, Sands T, Pisano AP (2003). Microfabrication using one-step LPCVD porous polysilicon films. JMEMS 12(4):418–424Google Scholar
  35. 35.
    He R, Fan L, Wu MC, Kim C-J (2004). Porous Polysilicon Shell Formed by Electrochemical Etching for On-Chip Vacuum Encapsulation. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:332–335Google Scholar
  36. 36.
    Leibouitz KS, Pisano AP, Howe RT (1995). Permeable polysilicon etch-access windows for microshell fabrication. 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, June 1995, 1:224–227Google Scholar
  37. 37.
    Provine J, Ferralis N, Graham AB, Messana MW, Kant R, Maboudian R, Kenny TW, Howe RT (2010). Time Evolution of Released Hole Arrays into Membranes Via Vacuum Silicon Migration. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:344–347Google Scholar
  38. 38.
    Kant R, Choo H (2010). Numerical Modeling and Experimental Verifications of Single-Step, Deposition-Free, Hermetic Sealing Using Silicon Migration. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:262–263Google Scholar
  39. 39.
    Zhang H, Guo H, Wang Y, Zhang G, Zhihong L (2007). Study on a PECVD SiC-coated pressure sensor. J. Micromech. Microeng. 17:426–431CrossRefGoogle Scholar
  40. 40.
    Kotzara G, Freasa M, Abelb P, Fleischman A, Roy S, Zorman C, Morane JM, Melzak J (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23:2737–2750CrossRefGoogle Scholar
  41. 41.
    Zorman C (2009). Silicon Carbide as a Material for Biomedical Microsystems. DTIP of MEMS & MOEMS, Rome, Italy, Apr. 1-3, 2009:hal-00395712Google Scholar
  42. 42.
    Azevedo R, Costello B, Frank J, Jensen M, Thompson T, Zdeblick M (2010). Novel Method of Protecting and Connecting CMOS Chips Enables Networked Pacing Leads. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:260–261Google Scholar
  43. 43.
    Hsua J-M, Tathireddyb P,Rietha L, Normannc AR, Solzbacher F (2007). Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Films 516(1):34–41CrossRefGoogle Scholar
  44. 44.
    Savrun E (2002). Packaging Considerations for Very High Temperature Microsystems. Sensors Conference 2002:1139–1143Google Scholar
  45. 45.
    Saint-Gobain Ceramics sintered SiC product website:
  46. 46.
    CoorsTek Advanced Ceramics corporate website:
  47. 47.
    Ganesh I, Jana DC, shamshad S, Thiyagarajan N (2006). An Aqueous Gelcasting Process for Sintered Silicon Carbide Ceramics. J. American Ceramics Society 89:3056–3064Google Scholar
  48. 48.
    Hunter GW, Wrbanek JD, Okojie RS, Neudeck PG, Fralick GC, Chen LY, Xu J, Beheim GM (2006). Development and application of high temperature sensors and electronics for propulsion applications. Proceedings of the SPIE Defense and Security Symposium, Sensors for Propulsion Measurement Applications Workshop, 2006.Google Scholar
  49. 49.
    Chen L-Y, Lei J-H (2006). Packaging of Harsh Environment MEMS Devices. Chapter 12 of The MEMS Handbook, Gad-el-Hak M editor. CRC Press, Boca Raton.Google Scholar
  50. 50.
    Mantese JV, Alcini WV (1988). Platinum Wire Wedge Bonding: A New IC and Microsensor Interconnect. Journal of Electronic Materials 17(4):285–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations