SiC MEMS devices

Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)


Silicon carbide microelectromechanical device development is currently a very active area of research with a primary focus on increasing the robustness of traditional silicon MEMS. Silicon MEMS has developed to a level of maturity in which several commercial ventures are deploying silicon technology into automotive and consumer electronics markets. A large knowledge base has developed into surfaceand bulk-micromachined sensor types. This design expertise is being directly applied to sensor technology for harsh environment applications using SiC. This is accomplished because etch mask materials and etching techniques have already been developed that can be tailored to produce selective etching of SiC. These techniques can be linked together in a very similar fashion to silicon microfabrication, whether it be for surface- or bulk-micromachining of MEMS structures. This allows rapid development of SiC devices because the manufacturing concepts and design methodology can be readily applied. Hence, a large number of SiC MEMS sensor types have already been explored.


Silicon Carbide Harsh Environment Strain Sensor Proof Mass Device Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Transformer coupled plasma etching of 3C-SiC films using fluorinatedchemistry for microelectromechanical systems applications. Journal of Vacuum Science Technology B 22(2):513–518CrossRefGoogle Scholar
  2. 2.
    Jones DG, Pisano AP (2010). Aluminum nitride as a masking material for the plasma etching of silicon carbide structures. IEEE 23rd International Conference on Micro Electro Mechanical Systems, Hong Kong, Jan. 24-28:352–355Google Scholar
  3. 3.
    Myers DR, Cheng KB, Jamshidi B, Azevedo RG, Senesky DG, Wijesundara MBJ Pisano AP (2009). A Silicon Carbide Resonant Tuning Fork for Micro-Sensing Applications in High Temperature and High G-Shock Environment. Journal of Micro/Nanolithography, MEMS, and MOEMS 8:021116Google Scholar
  4. 4.
    Suster M, Guo J, Chaimanonart N, Ko WH, Young DJ (2006). A High-Performance MEMS Capacitive Strain Sensing Microsystem. JMEMS 15(5):1069–1077Google Scholar
  5. 5.
    Hetherington DL, Sniegowski JJ (1998). Improved Polysilicon Surface-micromachined Micromirror Devices using Chemical-mechanical Polishing. SPIE’s 43rd Annual Meeting, San Diego, CA, July 22, 1998.Google Scholar
  6. 6.
    Fu XA, Dunning J, Zorman CA, Mehregany M (2005). Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications. Sensors and Actuators A 119:169–176CrossRefGoogle Scholar
  7. 7.
    Rogacheva NN (2004). The Theory of Piezoelectric Shells and Plates. CRC Press.Google Scholar
  8. 8.
    Toriyama T (2004). Piezoresistance Consideration on n-type 6H SiC for MEMS-based Piezoresistance Sensors. J. Micromech. Microeng. 14:1445–1448CrossRefGoogle Scholar
  9. 9.
    Azevedo RG, Chen I-Y, OŔeilly OM, Pisano AP (2005). Influence of Sensor Substrate Geometry on the Sensitivity of MEMS Micro-extensometers. IMECE Orlando, FL:IMECE2005-82724Google Scholar
  10. 10.
    MicroStrain, Inc. USA.
  11. 11.
    Beckwith TG, Marangoni RD, Lienhard JH (1993). Mechanical Measurements. Addison-Wesley, 5th Ed.Google Scholar
  12. 12.
    Jamshidi B, Azevedo RG, Wijesundara MBJ, Pisano AP (2007). Corrosion Enhanced Capacitive Strain Gauge at 370C. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:804–807Google Scholar
  13. 13.
    Tongue BH (2001). Principles of Vibration. Oxford University Press, 2nd Ed.Google Scholar
  14. 14.
    Azevedo RG, Zhang J, Jones DG, Myers DR, Jog AV, Jamshidi B, Wijesundara MBJ, Maboudian R, Pisano AP (2007). Silicon Carbide Coated MEMS Strain Sensor for Harsh Environment Applications, MEMS 2007, 20th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2007:643–646Google Scholar
  15. 15.
    Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu, XA, Mehregany, M, Wijesundara, MBJ, Pisano, AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors, 7(4):568–576CrossRefGoogle Scholar
  16. 16.
    Wojciechowski KE, Boser BE, Pisano AP (2004). A MEMS resonant strain sensor operated in air. MEMS Conference 2004: 841–845Google Scholar
  17. 17.
    Krauthammer T, Venstal E (2001). Thin Plates and Shells: Theory, Analysis, and Applications. CRC Press.Google Scholar
  18. 18.
    Di Giovanni M (1982). Flat and Corrugated Diaphragm Design Handbook. CRC Press.Google Scholar
  19. 19.
    Beeby S (2004). MEMS Mechanical Sensors. Artech.Google Scholar
  20. 20.
    Zeirmann R, von Berg J, Reichert W, Obermeier E, Eickhoff M, Krotz G (1997). A high temperature pressure sensor with β-SiC on SOI substrates. Int. Conf. Solid State Sensors and Actuators, Chicago, June 16-19:1411–1414Google Scholar
  21. 21.
    Okojie R, Ned A, Kurtz A (1997). Operation of 6H-SiC Pressure Sensor at 500  ∘ C. Tech. Dig. 1997 Int. Conf. Solid State Sensors and Actuators,Chicago IL, June 1619:1407-1409Google Scholar
  22. 22.
    Eickhoff M, Möller H, Krotez G, Berg JV, Ziermann R (1999). A High Temperature Pressure Sensor Prepared by Selective Deposition of Cubic Silicon Carbide on SOI Substrates. Sensors and Actuators A 74:56–59CrossRefGoogle Scholar
  23. 23.
    Faris W, Mohammed H (2004). A comparison between two solution approaches for diaphragm-based capacitive pressure microsensor. ICSE Dec 7-9:295–297Google Scholar
  24. 24.
    Pakula LS, Yang H, Pham HTM, French PJ, Sarro PM (2004). Fabrication of a CMOS compatible pressure sensor for harsh environments. J. Micromech. and Microeng. 14(11):1478–1483CrossRefGoogle Scholar
  25. 25.
    Young DJ, Du J, Zorman CA, Ko WH (2004). High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor. IEEE Sensors Journal 4(4):464–470CrossRefGoogle Scholar
  26. 26.
    Chen L, Mehregany M (2008). A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement. Sensors and Actuators A 145146:2-8CrossRefGoogle Scholar
  27. 27.
    Seshia AA, Palaniapan M, Roessig TA, Howe RT, Gooch RW, Schimert TR, Montague S (2002). A vacuum packaged surface micromachined resonant accelerometer. JMEMS 11(6):784–793Google Scholar
  28. 28.
    Atwell AR, Okokie RS, Kornegay KT, Roberson SL, Beliveau A (2003). Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sensors and Acutators A 104:11–18CrossRefGoogle Scholar
  29. 29.
    Rajgopal S, Zula D, Garverick S, Mehregany M (2009). A Silicon Carbide Accelerometer for Extreme Environment Applications. Materials Science Forum 600-603:859–862CrossRefGoogle Scholar
  30. 30.
    Pakula LS, Yang H, French PJ (2003). A CMOS compatible SiC accelerometer. Sensors 2003:761–764Google Scholar
  31. 31.
    Fleischman AJ, Roy S, Zorman CA, Mehregany M (1996). Polycrystalline silicon carbide for surface micromachining. MEMS 1996, San Diego, Feb. 11-15:234-238Google Scholar
  32. 32.
    Fleischman AJ, Roy S, Zorman CA, Mehregany M (1997). Behavior of polycrystalline SiC and Si surface-micromachined lateral resonant structures at elevated temperatures. Int. Conf. Silicon Carbide, IIINitrides, and Related Materials, Stockholm, Aug. 31-Sept. 5:643–644Google Scholar
  33. 33.
    Wiser R, Zorman ZA, Mehregany M (2003). Fabrication and testing of vertically-actuated polycrystalline silicon carbide micromechanical resonators for MHz frequency applications. Transducers 2003, Boston, June 8-12:1164–1167Google Scholar
  34. 34.
    Bhave SA, Gao D, Maboudian R, Howe RT (2005). Fully-differentical poly-SiC lame-mode resonator and checkerboard filter. MEMS 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest (2005):223–226Google Scholar
  35. 35.
    Jiang L, Cheung R, Hedley J, Hassan M, Harris AJ, Burdess JS, Mehregany M, Zorman CA (2006). SiC cantilever resonators with electrothermal actuation. Sensors and Actuators A 128:376–386CrossRefGoogle Scholar
  36. 36.
    Seshia AA, Howe RT, Montague S (2002). A Micromechanical Resonant Output Gyroscope. Proc. IEEE MEMS 2002, Las Vegas, Jan. 20-24:722–727Google Scholar
  37. 37.
    Xie H, Fedder GK (2003). Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope. IEEE Sensors Journal 3(5):622–631CrossRefGoogle Scholar
  38. 38.
    Maenaka K, Ioku S, Fujita T, Takayama Y (2005). Design, fabrication and operation of MEMS gimbal gyroscope. Sensors and Actuators A 121(1):6–15CrossRefGoogle Scholar
  39. 39.
    Cheung R (ed.) (2006). Silicon Carbide Micro Electromechanical Systems. Imperial College Press.Google Scholar
  40. 40.
    Lloyd Spetz A, Baranzahi A, Tobias P, Lundström I (1997). High temperature sensors based on metal-insulator-silicon carbide devices. Phys. Stat. Sol. A 162:493–511CrossRefGoogle Scholar
  41. 41.
    Baranzahi A, Lloyd Spetz A, Glavmo M, Carlsson C, Nytomt J, Salomonsson P, Jobson E, Häggendal B, Martensson P, Lundström I (1997). Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases. Sensors and Actuators B 43:52–59CrossRefGoogle Scholar
  42. 42.
    Moritz W, Fillipov V, Vasiliev A, Terentjev A (1999). Silicon carbide based semiconductor sensor for the detection of fluorocarbons. Sensors and Actuators B 58:486–490CrossRefGoogle Scholar
  43. 43.
    Svennigstorp H, Widén B, Salomonsson P, Ekedahl L-G, Lundström I, Tobias P, Lloyd Spetz A (2001). Detection of HC in exhaust gases by an array of MISiC sensors. Sensors and Actuators B 77:177–185CrossRefGoogle Scholar
  44. 44.
    Wright NG, Horsfall AB (2007). SiC sensors: a review. J. Phys. D: Appl. Phys. 40:6345–6354CrossRefGoogle Scholar
  45. 45.
    Wiche G, Berns A, Steffes H, Obermeier E (2005). Thermal analysis of silicon carbide based micro hotplates for metal oxide gas sensors. Sensors and Actuators A 123-124:12–17Google Scholar
  46. 46.
    Cree Inc., USA.
  47. 47.
    Zhu H, Chen X, Cai J, Wu Z (2009). 4HSiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid-State Electronics 53(1):7–10CrossRefGoogle Scholar
  48. 48.
    Torvik JT, Pankove JI, Van Zeghbroeck BJ (1999). IEEE Trans. Electron Devices 46(7):1326–1331CrossRefGoogle Scholar
  49. 49.
    Seely JF, Kjorntattanawanich B, Holland GE, Korde R (2005). Response of a SiC photodiode to extreme ultraviolet through visible radiation. Optics Letters 30(23):3120–3122CrossRefGoogle Scholar
  50. 50.
    Strokan NB, Ivanov AM, Savkina NS, Streichuk AM, Lebedev AA, Syväjärvi M, Yakimova R (2003). Detection of strongly and weakly ionizing radiation by triode structure based on SiC films. J. Appl. Phys. 93:5714–5719CrossRefGoogle Scholar
  51. 51.
    Nagai T, Yamamoto K, Kobayashi I (1982). SiC thin-film thermistor. J. Phys. E: Sci. Instrum. 15:520–524CrossRefGoogle Scholar
  52. 52.
    de Vasconcelos EA, Khan SA, Zhang WY, Uchida H, Katsube T (2000). Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sensors and Actuators 83:167–171CrossRefGoogle Scholar
  53. 53.
    Kiewra EW, Wayner Jr PC (1989). The Development of a Thin-Film Silicon Carbide Thermistor Array for Determining Temperature Profiles in an Evaporating Liquid Film. J. Electrochem. Soc. 136(3):740–744CrossRefGoogle Scholar
  54. 54.
    Casady JB, Dillard WC, Johnson RW, Rao U (1996). A Hybrid 6H-SiC Temperature Sensor Operational from 25  ∘ C to 500  ∘ C. IEEE Trans. Comp., Pack., Manuf. Tech. A 19(3):416–422Google Scholar
  55. 55.
    Casady JB, Johnson RW (1996). Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid-State Electronics 39(10):1409–1422CrossRefGoogle Scholar
  56. 56.
    Riza NA, Sheikh M (2010). Silicon Carbide-Based Extreme Environment Hybrid Design Temperature Sensor Using Optical Pyrometry and Laser Interferometry. IEEE Sensors Journal 10(2):219–224CrossRefGoogle Scholar
  57. 57.
    Slack GA (1975). Thermal expansion of some diamondlike crystals. J. Applied Physics 46(1):89–98CrossRefGoogle Scholar
  58. 58.
    Reeber RR, Wang K (1996) Thermal expansion and lattice parameters of group IV semiconductors. Materials Chemistry and Physics 46:259-264CrossRefGoogle Scholar
  59. 59.
    Reeber RR, Wang K (1996) Thermal expansion of β-SiC, GaP and InP. Materials Research Symposium Proceedings 410:211-216CrossRefGoogle Scholar
  60. 60.
    Azevedo RG, Myers DR, Pisano AP (2009). Temperature-insensitive silicon carbide resonant micro-extensometers. Transducers 2009, Denver, June 21-25:268–271Google Scholar
  61. 61.
    Berry BS, Pritchett WC, Fuentes RI, Babich I (1991). Stress and thermal expansion of β-SiC films by the vibrating-membrane method. J. Mater. Res. 6(5):1061–1065CrossRefGoogle Scholar
  62. 62.
    Okojie RS (2004). Inelastic Stress Relaxation in Single Crystal SiC Substrates. Material Science Forum 457-460:375–378CrossRefGoogle Scholar
  63. 63.
    Zhang J, Howe RT, Maboudian R (2006). Control of strain gradient in doped polycrystalline silicon carbide films through tailored doping. J. Micromech. Microeng. 16:L1-L5CrossRefGoogle Scholar
  64. 64.
    Roessig TA, Howe RT, Pisano AP, Smith JH (2007). Surface-micromachined resonant accelerometer. 1997 International Conference on Solid-State Sensors and Actuators:859–862Google Scholar
  65. 65.
    Srikar VT, Senturia SD (2001). The design and analysis of shock resistant microsystems (MEMS). Transducers 2001, Munich, Germany:1370–1373Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations