Skip to main content

Silicon Carbide Electronics

  • Chapter
  • First Online:
Silicon Carbide Microsystems for Harsh Environments

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 22))

Abstract

One of the major benefits of silicon carbide for harsh environment microsystems is the ability to create high temperature electronics from a corrosion resistance base material. Because silicon carbide is a wide band semiconductor, it is more robust to high temperature excursions. But silicon carbide electronics requires the ability to create a substrate and thin-film layers that are high purity and can be doped in a controlled manner. Thematerials developments outlined in Chapter 2 lay the foundation for developing silicon carbide electronics. Besides being able to create doped, highpurity films, silicon carbide electronics requires a way to create localized doped regions in order to create specific transistor topologies as well as a metallization scheme for routing signals. This chapter will begin with a generalized process flow for creating silicon carbide electronics, followed by discussions on ion implantation doping and electrical contacts for silicon carbide. Then different electrical device topologies explored in silicon carbide will be described in the context of high power switching, high temperature amplifiers, and wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feng ZC, Zhao JH (2004). Silicon carbide materials, processing and devices. Taylor and Francis, Inc. London UK

    Google Scholar 

  2. Rao, MV, Tucker, JB, Ridgway MC, Holland OW, Papanicolaou N, Mittereder J (1999). Ion-implantation in bulk semi-insulating 4H-SiC. Journal of Applied Physics 86(2):752–758

    Article  Google Scholar 

  3. Rao MV, Tucker J, Holland OW, Papanicolaou N, Chi PH, Kretchmer JW, Ghezzo (1999). Donor Ion-Implantation Doping into SiC. Journal of Electronic Materials 28 (3):334–340

    Google Scholar 

  4. Gardner J, Edward A, Rao MV, Papanicolaou N, Kelner G, Holland OW (1997). Ion-Implantation Doping of Silicon Carbide. ORNL/CP-95077

    Google Scholar 

  5. Negoro Y, Kimoto T, Matsunami H (2003). High-Voltage 4H-SiC pn Diodes Fabricated by p-Type Ion Implantation. Electronics and Communications in Japan, Part 2, 86(12):434–441

    Google Scholar 

  6. Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)

    Google Scholar 

  7. Saddow SE, Williams J, Isaacs-Smith T, Capano MA, Cooper Jr. JA, Mazzola MS, Hsieh AJ, Casady JB (2000). Temperature Implant Activation in 4H and 6H-SiC in a Silane Ambient to Reduce Step Bunching. Materials Science Forum 338-342:901–904

    Article  Google Scholar 

  8. Troffer T, Schadt M, Frank T, Itoh H, Pensl G, Heindl J, Strunk HP, Maier M (1997). Doping of SiC by Implantation of Boron and Aluminum. Physica Status Solidi A 162 (1):277–291

    Article  Google Scholar 

  9. Kimoto T, Itoh A, Inoue N, Takemura O, Yamamoto T, Nakajima T, Matsunami H (1998). Conductivity Control of SiC by In-Situ Doping and Ion Implantation. Materials Science Forum 264–268:675-680

    Article  Google Scholar 

  10. Choyke WJ, Matsunami H, Pensl G (2004). Silicon Carbide: Recent Major Advances. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  11. Porter LM, Davis RF (1995). A critical review of ohmic and rectifying contacts for silicon carbide. Materials Science and Engineering B 34:83-105

    Article  Google Scholar 

  12. Crofton J, L. M. Porter LM, Williams JR (1997). The Physics of Ohmic Contacts to SiC. physica status solidi B 202:581-603

    Google Scholar 

  13. Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)

    Google Scholar 

  14. Liu F, Hsia B, Senesky DG, Carraro C, Pisano AP, Maboudian R (2010). Ohmic Contact with Enhanced Stability to Polycrystalline Silicon Carbide via Carbon Interfacial Layer. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:214–217

    Google Scholar 

  15. Chung G-S, Yoon K-Y (2008). Ohmic contacts to single-crystalline 3C-SiC films for extreme-environment MEMS applications. Microelectronics Journal 39:1408–1412

    Article  Google Scholar 

  16. Okojie RS, Lukco D, Chen YL, Spry DJ (2002). Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600 ∘ C. Journal of Applied Physics 91:6553–6559

    Article  Google Scholar 

  17. Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica. Status Solidi A:1–17

    Google Scholar 

  18. Sozza A, Dua C, Kerlain A, Brylinski C, Zanoni E (2004). Long-term reliability of Ti-Pt-Au metallization system for Schottky contact and first-level metallization on SiC MESFET. Microelectronics Reliability 44:1109–1113

    Article  Google Scholar 

  19. Oder TN, Martin P, Adedeji AV, T. Isaacs-Smith T, William JR (2007). Improved Schottky Contacts on n-Type 4H-SiC Using ZrB2 Deposited at High Temperatures. Journal of Electronics Materials 36 (7):805–811

    Google Scholar 

  20. Teraji T, Hara S, Okushi H, Kajimura K (1997). Ideal Ohmic contact to n-type 6H-SiC by reduction of Schottky barrier height. Applied Physics Lettetter 71 (5):689–691

    Article  Google Scholar 

  21. Lundberg N, Ostling M, Zetterling C-M, Tagtsrom P, Jansson U (2000). CVD-Based Tungsten Carbide Schottky Contacts to 6H-SiC for Very High-Temperature Operation. Journal of Electronic Materials 29(3):372–375

    Article  Google Scholar 

  22. Oder TN, Sutphin E, Kummari R (2009). Ideal SiC Schottky barrier diodes fabricated using refractory metal borides. Journal of Vacuum Science and Technology B 27 (4): 1865–1869

    Article  Google Scholar 

  23. Baliga BJ (2009). Advanced Power Rectifier Concepts. Springer Science+Business Media, LLC. New York, NY

    Google Scholar 

  24. Schoen KJ, Henning JP, Woodall JM, Cooper Jr. JA, Melloch MR (1998). A Dual Metal Trench Schottky Pinch-Retcifer in 4H-SiC. IEEE Electron Device Letters 19:97–99

    Article  Google Scholar 

  25. Baliga BJ (1996). Physics of Power Semiconductor Devices. JWS Publishing.

    Google Scholar 

  26. Chow TP, Ramungul N, Fedison J, Tang Y (2004). SiC Bipolar Transistors and Thyristors. Silicon Carbide: Recent Major Advances, Choyke WJ et al. editors. Springer-Verlag, Berlin:737–764

    Google Scholar 

  27. Takayama D, Sugawara Y, Hayashi T, Singh R, Palmour J, Ryu S, Asano K (2001). Static and dynamic characteristics of 4–6 kV 4H-SiC SIAFETs. Proceedings of the 13th Inter. Symp. on Power Semiconductor Devices and ICs: 41–44

    Google Scholar 

  28. Palmour JW, Edmond JA, Kong HS, Carter Jr. CH (1993). Proc. of the 28th Inter. Society Engergy Converversion Conference: 1249–

    Google Scholar 

  29. Tan J, Cooper Jr. JA, Melloch MR. IEEE Electron Device Letters 9:487–

    Google Scholar 

  30. Ryu S-H, Agarwal A, Richmond J, Palmour J, Saks N, Williams J (2002). IEEE Electron Device Letters 23:321–

    Google Scholar 

  31. Agarwall A, Ryu S-H, Palmour J (2004). Chapter from Silicon Carbide: Recent Major Advances, Choyke WJ et al., editors. Springer-Verlag, Berlin.

    Google Scholar 

  32. Neudeck P, Okojie R, Chen L (2002). High-temperature electronics–A role for wide bandgap semiconductors? Proc. IEEE 90(6):1065–1076

    Article  Google Scholar 

  33. Neudeck PG, Spry DJ, Chen L-Y, Beheim GM, Okojie RS, Chang CW, Meredith RD, Ferrier TL, Evans LJ, Krasowski MJ, Prokop NF (2008). Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 ∘ C. Proc. IEEE 29(5):456–459

    Google Scholar 

  34. Patel AC (2009). Silicon Carbide JFET Integrated Circuit Technology for High-Temperature Sensors. Ph.D Dissertation, Electrical Engineering and Computer Science, Case Western Reserve University.

    Google Scholar 

  35. Neudeck PG, Spry DJ, Chen L-Y, Chang CW, Beheim GM, Okojie RS, Evans LJ, Meredith RD, Ferrier TL, Krasowski MJ, Prokop NF (2009). Prolonged 500  ∘ C Operation of 6H-SiC JFET Integrated Circuitry. Materials Science Forum 615-617:929–932

    Article  Google Scholar 

  36. Rebello NS, Shoucair FS, Palmour JW (1996). 6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25-500 ∘ C). IEE Proc.-Circuits Devices Syst. 143(2):115–122

    Article  MATH  Google Scholar 

  37. Brown DM, Downey E, Ghezzo M, Kretchmer J, Krishnamurthy V, Hennessy W, Michon G (1997). Silicon Carbide MOSFET Integrated Circuit Technology. Phys. Stat. Sol. A 162:459–479

    Article  Google Scholar 

  38. Spry D, Neudeck P, Okojie R, Chen L-Y, Beheim G, Meredith R, Mueller W, Ferrier T (2004). Electrical Operation of 6H-SiC MESFET at 500  ∘ C for 500 Hours in Air Ambient. Proceedings of IMAPS, Santa Fe, NM:WA1-1–WA1-7

    Google Scholar 

  39. Franke W-T, Fuchs FW (2009). Comparison of switching and conducting performance of SiC-JFET and SiC-BJT with a state of the art IGBT. 13th European Conference on Power Electronics and Applications:1–10

    Google Scholar 

  40. Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowski MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Phys. Status Solidi A:1–17

    Google Scholar 

  41. Lee J-Y, Singh S, Cooper JA (2008). Demonstration and Characterization of Bipolar Monolithic Integrated Circuits in 4H-SiC. IEEE Trans. Electron Devices 55(8):1946–1953

    Article  Google Scholar 

  42. Morvan E, Kerlain A, Dua C, Brylinski C (2004). Development of SiC Devices for Microwave and RF Power Amplifiers. Silicon Carbide: Recent Major Advances, Choyke WJ et al. editors. Springer-Verlag, Berlin:839–867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu B. J. Wijesundara .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wijesundara, M.B.J., Azevedo, R.G. (2011). Silicon Carbide Electronics. In: Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7121-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7121-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7120-3

  • Online ISBN: 978-1-4419-7121-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics