Advertisement

Silicon Carbide Electronics

Chapter
  • 1.4k Downloads
Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)

Abstract

One of the major benefits of silicon carbide for harsh environment microsystems is the ability to create high temperature electronics from a corrosion resistance base material. Because silicon carbide is a wide band semiconductor, it is more robust to high temperature excursions. But silicon carbide electronics requires the ability to create a substrate and thin-film layers that are high purity and can be doped in a controlled manner. Thematerials developments outlined in Chapter 2 lay the foundation for developing silicon carbide electronics. Besides being able to create doped, highpurity films, silicon carbide electronics requires a way to create localized doped regions in order to create specific transistor topologies as well as a metallization scheme for routing signals. This chapter will begin with a generalized process flow for creating silicon carbide electronics, followed by discussions on ion implantation doping and electrical contacts for silicon carbide. Then different electrical device topologies explored in silicon carbide will be described in the context of high power switching, high temperature amplifiers, and wireless communication.

Keywords

Silicon Carbide Ohmic Contact Schottky Contact Drift Region High Power Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feng ZC, Zhao JH (2004). Silicon carbide materials, processing and devices. Taylor and Francis, Inc. London UKGoogle Scholar
  2. 2.
    Rao, MV, Tucker, JB, Ridgway MC, Holland OW, Papanicolaou N, Mittereder J (1999). Ion-implantation in bulk semi-insulating 4H-SiC. Journal of Applied Physics 86(2):752–758CrossRefGoogle Scholar
  3. 3.
    Rao MV, Tucker J, Holland OW, Papanicolaou N, Chi PH, Kretchmer JW, Ghezzo (1999). Donor Ion-Implantation Doping into SiC. Journal of Electronic Materials 28 (3):334–340Google Scholar
  4. 4.
    Gardner J, Edward A, Rao MV, Papanicolaou N, Kelner G, Holland OW (1997). Ion-Implantation Doping of Silicon Carbide. ORNL/CP-95077Google Scholar
  5. 5.
    Negoro Y, Kimoto T, Matsunami H (2003). High-Voltage 4H-SiC pn Diodes Fabricated by p-Type Ion Implantation. Electronics and Communications in Japan, Part 2, 86(12):434–441Google Scholar
  6. 6.
    Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)Google Scholar
  7. 7.
    Saddow SE, Williams J, Isaacs-Smith T, Capano MA, Cooper Jr. JA, Mazzola MS, Hsieh AJ, Casady JB (2000). Temperature Implant Activation in 4H and 6H-SiC in a Silane Ambient to Reduce Step Bunching. Materials Science Forum 338-342:901–904CrossRefGoogle Scholar
  8. 8.
    Troffer T, Schadt M, Frank T, Itoh H, Pensl G, Heindl J, Strunk HP, Maier M (1997). Doping of SiC by Implantation of Boron and Aluminum. Physica Status Solidi A 162 (1):277–291CrossRefGoogle Scholar
  9. 9.
    Kimoto T, Itoh A, Inoue N, Takemura O, Yamamoto T, Nakajima T, Matsunami H (1998). Conductivity Control of SiC by In-Situ Doping and Ion Implantation. Materials Science Forum 264–268:675-680CrossRefGoogle Scholar
  10. 10.
    Choyke WJ, Matsunami H, Pensl G (2004). Silicon Carbide: Recent Major Advances. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  11. 11.
    Porter LM, Davis RF (1995). A critical review of ohmic and rectifying contacts for silicon carbide. Materials Science and Engineering B 34:83-105CrossRefGoogle Scholar
  12. 12.
    Crofton J, L. M. Porter LM, Williams JR (1997). The Physics of Ohmic Contacts to SiC. physica status solidi B 202:581-603Google Scholar
  13. 13.
    Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)Google Scholar
  14. 14.
    Liu F, Hsia B, Senesky DG, Carraro C, Pisano AP, Maboudian R (2010). Ohmic Contact with Enhanced Stability to Polycrystalline Silicon Carbide via Carbon Interfacial Layer. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:214–217Google Scholar
  15. 15.
    Chung G-S, Yoon K-Y (2008). Ohmic contacts to single-crystalline 3C-SiC films for extreme-environment MEMS applications. Microelectronics Journal 39:1408–1412CrossRefGoogle Scholar
  16. 16.
    Okojie RS, Lukco D, Chen YL, Spry DJ (2002). Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600 ∘ C. Journal of Applied Physics 91:6553–6559CrossRefGoogle Scholar
  17. 17.
    Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica. Status Solidi A:1–17Google Scholar
  18. 18.
    Sozza A, Dua C, Kerlain A, Brylinski C, Zanoni E (2004). Long-term reliability of Ti-Pt-Au metallization system for Schottky contact and first-level metallization on SiC MESFET. Microelectronics Reliability 44:1109–1113CrossRefGoogle Scholar
  19. 19.
    Oder TN, Martin P, Adedeji AV, T. Isaacs-Smith T, William JR (2007). Improved Schottky Contacts on n-Type 4H-SiC Using ZrB2 Deposited at High Temperatures. Journal of Electronics Materials 36 (7):805–811Google Scholar
  20. 20.
    Teraji T, Hara S, Okushi H, Kajimura K (1997). Ideal Ohmic contact to n-type 6H-SiC by reduction of Schottky barrier height. Applied Physics Lettetter 71 (5):689–691CrossRefGoogle Scholar
  21. 21.
    Lundberg N, Ostling M, Zetterling C-M, Tagtsrom P, Jansson U (2000). CVD-Based Tungsten Carbide Schottky Contacts to 6H-SiC for Very High-Temperature Operation. Journal of Electronic Materials 29(3):372–375CrossRefGoogle Scholar
  22. 22.
    Oder TN, Sutphin E, Kummari R (2009). Ideal SiC Schottky barrier diodes fabricated using refractory metal borides. Journal of Vacuum Science and Technology B 27 (4): 1865–1869CrossRefGoogle Scholar
  23. 23.
    Baliga BJ (2009). Advanced Power Rectifier Concepts. Springer Science+Business Media, LLC. New York, NYGoogle Scholar
  24. 24.
    Schoen KJ, Henning JP, Woodall JM, Cooper Jr. JA, Melloch MR (1998). A Dual Metal Trench Schottky Pinch-Retcifer in 4H-SiC. IEEE Electron Device Letters 19:97–99CrossRefGoogle Scholar
  25. 25.
    Baliga BJ (1996). Physics of Power Semiconductor Devices. JWS Publishing.Google Scholar
  26. 26.
    Chow TP, Ramungul N, Fedison J, Tang Y (2004). SiC Bipolar Transistors and Thyristors. Silicon Carbide: Recent Major Advances, Choyke WJ et al. editors. Springer-Verlag, Berlin:737–764Google Scholar
  27. 27.
    Takayama D, Sugawara Y, Hayashi T, Singh R, Palmour J, Ryu S, Asano K (2001). Static and dynamic characteristics of 4–6 kV 4H-SiC SIAFETs. Proceedings of the 13th Inter. Symp. on Power Semiconductor Devices and ICs: 41–44Google Scholar
  28. 28.
    Palmour JW, Edmond JA, Kong HS, Carter Jr. CH (1993). Proc. of the 28th Inter. Society Engergy Converversion Conference: 1249–Google Scholar
  29. 29.
    Tan J, Cooper Jr. JA, Melloch MR. IEEE Electron Device Letters 9:487–Google Scholar
  30. 30.
    Ryu S-H, Agarwal A, Richmond J, Palmour J, Saks N, Williams J (2002). IEEE Electron Device Letters 23:321–Google Scholar
  31. 31.
    Agarwall A, Ryu S-H, Palmour J (2004). Chapter from Silicon Carbide: Recent Major Advances, Choyke WJ et al., editors. Springer-Verlag, Berlin.Google Scholar
  32. 32.
    Neudeck P, Okojie R, Chen L (2002). High-temperature electronics–A role for wide bandgap semiconductors? Proc. IEEE 90(6):1065–1076CrossRefGoogle Scholar
  33. 33.
    Neudeck PG, Spry DJ, Chen L-Y, Beheim GM, Okojie RS, Chang CW, Meredith RD, Ferrier TL, Evans LJ, Krasowski MJ, Prokop NF (2008). Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 ∘ C. Proc. IEEE 29(5):456–459Google Scholar
  34. 34.
    Patel AC (2009). Silicon Carbide JFET Integrated Circuit Technology for High-Temperature Sensors. Ph.D Dissertation, Electrical Engineering and Computer Science, Case Western Reserve University.Google Scholar
  35. 35.
    Neudeck PG, Spry DJ, Chen L-Y, Chang CW, Beheim GM, Okojie RS, Evans LJ, Meredith RD, Ferrier TL, Krasowski MJ, Prokop NF (2009). Prolonged 500  ∘ C Operation of 6H-SiC JFET Integrated Circuitry. Materials Science Forum 615-617:929–932CrossRefGoogle Scholar
  36. 36.
    Rebello NS, Shoucair FS, Palmour JW (1996). 6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25-500 ∘ C). IEE Proc.-Circuits Devices Syst. 143(2):115–122zbMATHCrossRefGoogle Scholar
  37. 37.
    Brown DM, Downey E, Ghezzo M, Kretchmer J, Krishnamurthy V, Hennessy W, Michon G (1997). Silicon Carbide MOSFET Integrated Circuit Technology. Phys. Stat. Sol. A 162:459–479CrossRefGoogle Scholar
  38. 38.
    Spry D, Neudeck P, Okojie R, Chen L-Y, Beheim G, Meredith R, Mueller W, Ferrier T (2004). Electrical Operation of 6H-SiC MESFET at 500  ∘ C for 500 Hours in Air Ambient. Proceedings of IMAPS, Santa Fe, NM:WA1-1–WA1-7Google Scholar
  39. 39.
    Franke W-T, Fuchs FW (2009). Comparison of switching and conducting performance of SiC-JFET and SiC-BJT with a state of the art IGBT. 13th European Conference on Power Electronics and Applications:1–10Google Scholar
  40. 40.
    Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowski MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Phys. Status Solidi A:1–17Google Scholar
  41. 41.
    Lee J-Y, Singh S, Cooper JA (2008). Demonstration and Characterization of Bipolar Monolithic Integrated Circuits in 4H-SiC. IEEE Trans. Electron Devices 55(8):1946–1953CrossRefGoogle Scholar
  42. 42.
    Morvan E, Kerlain A, Dua C, Brylinski C (2004). Development of SiC Devices for Microwave and RF Power Amplifiers. Silicon Carbide: Recent Major Advances, Choyke WJ et al. editors. Springer-Verlag, Berlin:839–867Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations