Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)


Microsystems, or microelectromechanical systems (MEMS), technology continues to grow rapidly by enabling ever emerging applications that demand diverse, versatile functionality.Microsystems refers to a class of sub-millimeter scale sensors and actuators coupled with signal processing capable of measuring physical and chemical changes or performing desired physical and chemical functions. Microsystem technology based on micro-scale mechanical transducers progressed because silicon (Si) possesses both favorable electrical and mechanical properties to create these micro-sensor elements. Although many types of materials, ranging from ceramics to polymers, have been explored as platforms for microsystem technology, Si is currently the dominant platform. Si microsystems leverage the highly-parallel batch fabrication paradigm that has made microfabricated silicon-based semiconductor electronics commercially viable. Furthermore, they have benefited from a large body of knowledge around Si masking and etching techniques, which make fabrication of complicated geometries possible. This has enabled the current pervasiveness of silicon microsystems and components; they range from accelerometers for automotive airbags and inertial sensing, gyroscopes in video game controllers, micro-mirrors for projection displays, injector nozzles for inkjet printer cartridges, and mechanical timing references and RF filters for communication systems.


Breakdown Voltage Harsh Environment Structural Health Monitoring Gauge Factor Structural Health Monitoring System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kroetz GH, Eickhoff MH, Moeller H (1999). Silicon Compatible Materials for Harsh Environment Sensors. Sensors and Actuators 74:182–189CrossRefGoogle Scholar
  2. 2.
    Mehregany M, Zorman CA, Rajan N, Wu CH (1998). Silicon Carbide MEMS for Harsh Environments. Proceedings of the IEEE 86(8):1594–1610CrossRefGoogle Scholar
  3. 3.
    Hunter GW, Neudeck PG, Okojie RS, Beheim GM, Powell JA, Chen L (2003). An Overview of High-Temperature Electronics and Sensor Development at NASA Glenn Research Center. Journal of Turbomachinery 125:658–664CrossRefGoogle Scholar
  4. 4.
    Sarro PM (2000). Silicon Carbide as a New MEMS Technology. Sensors and Actuators 82:210–218CrossRefGoogle Scholar
  5. 5.
    Wright NG, Horsfall AB (2007). SiC Sensors: A Review. Journal of Physics D: Applied Physics 40:6345–6354CrossRefGoogle Scholar
  6. 6.
    Hamada K (2009). Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices. Materials Science Forum 600-603:889–893CrossRefGoogle Scholar
  7. 7.
    Hillion M, Chauvin J, Grondin O, Petit N (2008). Active Combustion Control of Diesel HCCI Engine: Combustion Timing. USA Society of Automotive Engineers, Inc., Warrendale, PA:Report number 2008-01-0984Google Scholar
  8. 8.
    Yoon M, Lee K, Sunwoo M (2007). A Method for Combustion Phasing Control Using Cylinder Pressure Measurement in a CRDI Diesel Engine. Mechatronics 17:469–479CrossRefGoogle Scholar
  9. 9.
    Toyota Motor Sales, USA Inc. Emissions #1 – Combustion Chemistry.
  10. 10.
    Jurger RK (1999). Automotive Electronics Hadbook, McGraw-Hill, USAGoogle Scholar
  11. 11.
    Turner J (2009). Automotive Sensors. Momentum Press, New YorkGoogle Scholar
  12. 12.
    DeLaat JC, Chang CT (2003). Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines. 16th International Symposium on Airbreathing Engines. Cleveland, Ohio, August 31-September 5, 2003:SABE2003–1054Google Scholar
  13. 13.
    He B, Shen T, Junichi K, Minggao O (2008). Input Observer-Based Individual Cylinder Air-Fuel Ratio Control: Modelling, Design and Validation. IEEE Transactions on Controls Systems Technology 16 (5):1057–1065CrossRefGoogle Scholar
  14. 14.
    Minor RR, Rowe DW (1998).Utilization of GPS/MEMS-IMU for Measurement of Dynamics for Range Testing of Missiles and Rockets. Position Location and Navigation Symposium, IEEE 1998:602–607Google Scholar
  15. 15.
    Baum GA (1998). Manufacturing Process Control for Industry of the Future. National Academy Press, Washington, D.C. Publication NMAB-487-2Google Scholar
  16. 16.
    Kersey D (2000). Optical Fiber Sensors for Permanent Down Well Monitoring Applications in the Oil and Gas Industry. IEICE Transactions Electronics E83-C(3):400–404Google Scholar
  17. 17.
    Vandelli N (2008). SiC MEMS Pressure Sensors For Harsh Environment Applications. MicroNano News, April, 2008:10–12Google Scholar
  18. 18.
    Tschulena G (1988). Sensors for Process Control. Physica Scripta T23:293–298CrossRefGoogle Scholar
  19. 19.
    Schadow KC (2004). MEMS Aerospace Applications. NATO Research and Technology Organization. RTO-EN-AVT-105Google Scholar
  20. 20.
    Brown TG, Davis B, Hepner D, Faust J, Myers C, Muller P, Harkins T, Hollis M, Miller C, Placzankis B (2001) Strap-Down Microelectromechanical (MEMS) Sensors for High-G Munition Applications. IEEE Transactions on Magnetics 37(1):336–342CrossRefGoogle Scholar
  21. 21.
    Habibi S, Cooper SJ, Stauffer J-M, Dutoit B (2008). Gun Hard Inertial Measurement Unit Based on MEMS Capacitive Accelerometer and Rate Sensor. Position, Location and Navigation Symposium, 2008 IEEE/ION:232–237Google Scholar
  22. 22.
    Farrar CR, Worden K (2007). An Introduction to Structural Health Monitoring. Philosophical Transactions of Royal Society A 365:303–315CrossRefGoogle Scholar
  23. 23.
    Eubank T (2007) Application of Condition Based Maintenance on Aerospace Structures. M.Sc. Thesis, Cranfield UniversityGoogle Scholar
  24. 24.
    Romero R, Summers H, Cronkhite J (1996). NASA/CR-198446; ARL-CR-289Google Scholar
  25. 25.
    Beard SJ, Kumar A, Qing X, Chan HL, Zhang C, Ooi TK (2005) Practical Issues in Real-World Implementation of Structural Health Monitoring Systems. SPIE Smart Structures and Material Systems, San Diego CA, March 6-10, 2005:196–203Google Scholar
  26. 26.
    Cheng H (2007). Strategy for Assessment of WWER Steam Generator Tube Integrity. International Atomic Energy Agency. Report IAEA-TECDOC-1577Google Scholar
  27. 27.
    Kim I-S, Hong J-K, Kim H-N, Jang K-S (2003). Wear Behavior of Steam Generator Tubes in Nuclear Power Plant Operating Condition. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, Czech Republic, August 1722, 2003:D04-5.Google Scholar
  28. 28.
    Wang GW, Pran K, Sagvolden G, Havsgard GB, Jensen AE, Johnson GA, Vohra ST (2001). Ship Hull Structure Monitoring Using Fibreoptic Sensors. Smart Materials and Structures 10:472–478CrossRefGoogle Scholar
  29. 29.
    Chen H, Cardone V, Lacey P (1998). Use of Operation Support Information Technology to Increase Ship Safety and Efficiency. SNAME Transactions 106:105–127Google Scholar
  30. 30.
    Paik BG, Cho SR, Park B-J, Lee D, Yun J-H, Bae B-D (2007). Employment of Wireless Sensor Networks for Full-Scale Ship Application. IFIP International Federation for Information Processing, EUC 2007, LNCS 4808:113–122Google Scholar
  31. 31.
    Baldwin C, Kiddy J, Salter T, Chen P, Niemczuk J (2002). Fiber Optic Structural Health Monitoring System: Rough Sea Trials of the RV Triton. Oceans MTS/IEEE 3(3):1806–1813CrossRefGoogle Scholar
  32. 32.
    Boller C (2001). Ways and Options for Aircraft Structural Health Management. Smart Materials and Structures 10:-432440Google Scholar
  33. 33.
    Gerardi TG (1990). Health Monitoring Aircraft. Journal of Intelligent Material Systems and Structures 1:375–384CrossRefGoogle Scholar
  34. 34.
    Woelcken P, Bockenheimer C, Speckmann H, Entelmann W (2006). Outline of Overall Aircraft Imposed Requirements on Airframe Enhancements by Nanotechnologies and Resulting Opportunities. Proceedings of CANEUS 2006, August-September, Toulouse, France:69–72.Google Scholar
  35. 35.
    Staszewski WJ, Mahzan S, Traynor R (2009). Health Monitoring of Aerospace Composite Structures – Active and Passive Approach. Composites Science and Technology 69(11-12):1687–1685Google Scholar
  36. 36.
    Mancini S, Tumino G, Gaudenzi P (2006). Structural Health Monitoring for Future Space Vehicles. Journal of Intelligent Materials Systems and Structures 17:577–585CrossRefGoogle Scholar
  37. 37.
    Derriso MM, Chang FK (2006). Future Roles of Structural Sensing for Aerospace Applications. NATO Research and Technology Organization: RTO-MP-AVT-141Google Scholar
  38. 38.
    Miller LM (1999). MEMS for Space Applications. SPIE Proceedings 3680:2–11CrossRefGoogle Scholar
  39. 39.
    Tessler, A. (2007). Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles. NASA Report NASA/TM-2007-214871Google Scholar
  40. 40.
    Tor-Arne Grönland T-A, Pelle Rangsten P, Nese M, Lang M (2007). Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 61:228–233CrossRefGoogle Scholar
  41. 41.
    de Rooij RF, Gautsch S, Briand D, Marxer C, Mileti G, Noell W, Shea H, Staufer U, van der Schoot B (2009). MEMS for Space. Transducers 2009, Denver, CO, USA, June 21-25, 2009Google Scholar
  42. 42.
    Takahashi K (2004) Micro Thrusters for Miniaturized Space Systems, Need and Perspective. Power MEMS, Kyoto, Japan, Nov. 28-30, 2004:2–3Google Scholar
  43. 43.
    George T, Son KA, Powers RA, del Castillo LY, Okojie R (2005). Harsh Environment Microtechnologies for NASA and Terrestrial Applications. IEEE Sensors:1253-1258Google Scholar
  44. 44.
    Hunter GW, Okojie RS, Krasowski M, Beheim, GM, Fralick G, Wrbanek J, Greenberg, P, Neudeck PG, Xu J (2007). Microsystems, Space Qualified Electronics, and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration. 5th International Planetary Probe Workshop, Bordeaux, France, June 25-29, 2007.Google Scholar
  45. 45.
    Choyke WJ, Matsunami H, Pensl G (2004). Silicon Carbide: Recent Major Advances. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  46. 46.
    Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Socciety 151:C210–C214.CrossRefGoogle Scholar
  47. 47.
    Fu XA, Dunning JL, Zorman CA, Mehregany M (2005). Polycrystalline 3C-SiC Thin Films Deposited by Dual Precursor LPCVD for MEMS Applications. Sensors and Actuators A 119:169–176CrossRefGoogle Scholar
  48. 48.
    Soloviev SI, Gao Y, Sudarshan TS (2000). Doping of 6H-SiC by Selective Diffusion of Boron. Applied Physics Letters 77(24):4004–4006CrossRefGoogle Scholar
  49. 49.
    Zhuang D, Edgar JH (2005). Wet Etching of GaN, AlN, and SiC: a Review. Materials Science and Engineering 48:1–46.CrossRefGoogle Scholar
  50. 50.
    Roper CS, Howe RT, Maboudian R (2009). Room-Temperature Wet Etching of Polycrystalline and Nanocrystalline Silicon Carbide Thin Films with HF and HNO3. Journal of The Electrochemical Society 156(3):D104–D107CrossRefGoogle Scholar
  51. 51.
    Wijesundara MBJ, Walther DC, Stoldt CR, Fu K, Gao D, Carraro C, Pisano AP, Maboudian R (2003). Low Temperature CVD SiC Coated Si Microcomponents for Reduced Scale Engines. Proceedings of ASME International Mechanical Engineering Congress and Exhibition, Washington D.C., November 15-21, 2003:IMECE2003-41696.Google Scholar
  52. 52.
    Fox DS, Opila EJ, Hann RE (2000). Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion. Journal of American Ceramic Society 83(7):1761–1767CrossRefGoogle Scholar
  53. 53.
    Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition).Google Scholar
  54. 54.
    Patil AC (2009). Silicon Carbide JFET Integrated Circuit Technology for High-Temperature Sensors. Ph.D. Thesis. Case Western Reserve University.Google Scholar
  55. 55.
    Ozpineci B, Tolbert LM(2003). Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications. ORNL/TM-2003/257Google Scholar
  56. 56.
    Lebedev AA, Kozlovski VV, Strokan NB, Davydov DV, Ivanov AM, Strel’chuk AM, Yakimova R (2002). Radiation Hardness of Wide-Gap Semiconductors (Using the Example of Silicon Carbide). Semiconductors 36(11):1270–1275CrossRefGoogle Scholar
  57. 57.
    Kon S, Oldham K, Horowitz R (2007). Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection. Proc. of SPIE Vol. 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems:65292V-1Google Scholar
  58. 58.
    French PJ, Evans AGR (1989). Piezoresistance in Polysilicon and its Applications. Solid-State Electronics 32(1):1–10CrossRefGoogle Scholar
  59. 59.
    Suhling JC, Jaeger RC. Silicon Piezoresistive Stress Sensors and Their Application in Electronic Packaging. IEEE Sensors Journal 1(1):14–30Google Scholar
  60. 60.
    Shor JS, Goldstein D, Kurtz AD (1993). Characterization of n-Type β-SiC as a Piezoresistor. IEEE Transactions on Electron Devices 40(6):1093–1099CrossRefGoogle Scholar
  61. 61.
    Srikar VT, Spearing SM (2003). Materials Selection in Micromechanical Design: An Application of the Ashby Approach. Journal of Microelectromechanical Systems 12(1):3–10CrossRefGoogle Scholar
  62. 62.
    Srikar VT, Senturia SD (2002). The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments. Journal of Microelectromechanical Systems 11(3):206–214CrossRefGoogle Scholar
  63. 63.
    Spearing SM (2000). Materials Issues in Microelectromechanical Systems (MEMS). Acta Metallurgica 48:179–196.Google Scholar
  64. 64.
    Yonenaga I (2003). High-temperature Strength of Bulk Single Crystals of III-V Nitrides. Journal of Materials Science: Materials in Electronics 14:279–281CrossRefGoogle Scholar
  65. 65.
    Yonenaga I (2001). Thermo-Mechanical Stability of Wide-Bandgap Semiconductors: High Temperature Hardness of SiC, AlN, GaN, ZnO and ZnSe. Physica B 308-310:1150–1152CrossRefGoogle Scholar
  66. 66.
    Pozzi M, Hassan M, Harris AJ, Burdess JS, Jiang L, Lee KK, Cheung R, Phelps GJ, Wright NG, Zorman CA, Mehregany M (2007). Mechanical Properties of a 3C-SiC Film Between Room Temperature and 600  ∘ C. Journal of Physics D: Applied Physics 40:3335–3342CrossRefGoogle Scholar
  67. 67.
    Pakula LS, Yang H, Pham HTM, French PJ, Sarro PM (2004). Fabrication of a CMOS compatible pressure sensor for harsh environments. Journal of Micromechanics and Microengineering 14(11):1478–1483CrossRefGoogle Scholar
  68. 68.
    Cree Semiconductor Product Specifications,
  69. 69.
    Wijesundara MBJ, Gao D, Carraro C, Howe RT, Maboudian R (2003). Nitrogen Doping of Polycrystalline 3C-SiC Films Grown Using 1,3-Disilabutane in a Conventional LPCVD Reactor. Journal of Crystal Growth 259:18–25CrossRefGoogle Scholar
  70. 70.
    Telford M (2003). SiC’s power cuts cost. III-Vs Review 16(4):44–47CrossRefGoogle Scholar
  71. 71.
    Neudeck PG, Gaverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica Solidi A 206(10):2329–2345CrossRefGoogle Scholar
  72. 72.
    Savrun E (2002). Packaging Considerations for Very High Tepmerature Microsystems. Sensors 2002, June 12-14, 2002:1139–1143Google Scholar
  73. 73.
    Vig JR (2001). Temperature-Insensitive Dual-Mode Resonant Sensors – A Review. IEEE Sensors Journal 1:62–68CrossRefGoogle Scholar
  74. 74.
    Melamud R, Kim B, Hopcroft MA, Chandorkar S, Agarwal M, Jha CM, Kenny TW (2007). Composite Flexural-Mode Resonator with Controllable Turnover Temperature. MEMS 2007, Kobe, Japan:199–202Google Scholar
  75. 75.
    Li Z,Bradt C (1986). Thermal Expansion of the Cubic (3C) Polytype of SiC. Journal of Materials Science 21:4366–4368CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations