Comparative Genome Analysis at the Sequence Level in the Brassicaceae

  • Chris TownEmail author
  • Renate Schmidt
  • Ian Bancroft
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)


In the world of plant genome sequencing, the cultivated Brassica species have been relatively under-resourced compared with other crop species largely due to their position in the economic hierarchy of perceived importance. Thus, with the completion of the Arabidopsis thaliana genome in the year 2000, the limited sequencing efforts undertaken in the Brassica crops and other species of the Brassicaceae have been largely restricted either to survey sequencing of various insert size clones or to finished sequences of small genomic regions, generally as bacterial artificial chromosome (BAC) clones. In this chapter, we review the sequencing efforts to date and how they have been used in comparative analysis with the Arabidopsis genome and with each other to begin to understand the genome organisation of members of the crucifer family, how they relate to one another, and how they may have evolved.


Collinearity Comparative genome analysis Duplication Genome organisation Polymorphism Reference sequence Sequence comparison Survey sequencing 



2-oxoglutarate-dependent dioxygenase


Bacterial artificial chromosome




Doubled haploid


Expressed sequence tag


Fluorescence in situ hybridisation


Glycine-rich pollen surface protein




Kilo base pairs


Landsberg erecta


Leucine-rich repeat


Mega base pairs


Miniature inverted repeat transposable elements


Nucleotide-binding leucine-rich repeat


Ribosomal DNA

R gene

Disease resistance gene


Rapid amplification of cDNA ends


Receptor-like kinase


Single nucleotide polymorphism


The Arabidopsis Information Resource


Terminal repeat retrotransposons in miniature



Work on Brassicaceae genomics in the authors’ laboratories has been supported by grants from the United States National Science Foundation (DBI-9813586 and DBI-0638536), the German Federal Ministry of Education and Research (BMBF), and the UK Biotechnology and Biological Sciences Research Council.


  1. Acarkan A, Rossberg M, Koch M, Schmidt R (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J 23:55–62CrossRefPubMedGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Ayele M, Haas BJ, Kumar N et al (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495CrossRefPubMedGoogle Scholar
  4. Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell. 18:1803–1818CrossRefPubMedGoogle Scholar
  5. Bakker EG, Traw MB, Toomajian C et al (2008) Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 178:2031–2043CrossRefPubMedGoogle Scholar
  6. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029CrossRefPubMedGoogle Scholar
  7. Blanc G, Barakat A, Guyot R et al (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101CrossRefPubMedGoogle Scholar
  8. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691CrossRefPubMedGoogle Scholar
  9. Boivin K, Acarkan A, Mbulu RS et al (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744CrossRefPubMedGoogle Scholar
  10. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438CrossRefPubMedGoogle Scholar
  11. Brown GG, Formanová N, Jin H et al (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272CrossRefPubMedGoogle Scholar
  12. Cheung F, Trick M, Drou N et al (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928CrossRefPubMedGoogle Scholar
  13. Cho K, O’Neill CM, Kwon SJ et al (2010) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599CrossRefPubMedGoogle Scholar
  14. Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342CrossRefPubMedGoogle Scholar
  15. Copenhaver GP, Nickel K, Kuromori T et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474CrossRefPubMedGoogle Scholar
  16. Deng Z, Li Y, Xia R et al (2009) Structural analysis of 83-kb genomic DNA from Thellungiella halophila: sequence features and microcolinearity between salt cress and Arabidopsis thaliana. Genomics 94:324–332CrossRefPubMedGoogle Scholar
  17. Desloire S, Gherbi H, Laloui W et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594CrossRefPubMedGoogle Scholar
  18. Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101:3286–3291CrossRefPubMedGoogle Scholar
  19. Gao M, Li G, McCombie WR, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. Theor Appl Genet 111:949–955CrossRefPubMedGoogle Scholar
  20. Gao M, Li G, Potter D et al (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598CrossRefPubMedGoogle Scholar
  21. Gao M, Li G, Yang B, McCombie WR, Quiros C (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679CrossRefPubMedGoogle Scholar
  22. Grant MR, McDowell JM, Sharpe AG et al (1998) Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA 95:15843–15848CrossRefPubMedGoogle Scholar
  23. Haas BJ, Wortman JR, Ronning CM et al (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3:7CrossRefPubMedGoogle Scholar
  24. Haberer G, Hindemitt T, Meyers BC et al. (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022CrossRefPubMedGoogle Scholar
  25. Haberer G, Mader MT, Kosarev P et al (2006) Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142:1589–1602CrossRefPubMedGoogle Scholar
  26. Hall AE, Keith KC, Hall SE et al (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7:108–114CrossRefPubMedGoogle Scholar
  27. Hall AE, Kettler GC, Preuss D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364CrossRefPubMedGoogle Scholar
  28. Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170:1913–1927CrossRefPubMedGoogle Scholar
  29. Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRefPubMedGoogle Scholar
  30. Hong CP, Plaha P, Koo DH et al (2006) A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells 22:300–307PubMedGoogle Scholar
  31. Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159–1165CrossRefPubMedGoogle Scholar
  32. Jander G, Norris SR, Rounsley SD et al (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450CrossRefPubMedGoogle Scholar
  33. Johnston JS, Pepper AE, Hall AE et al (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235CrossRefPubMedGoogle Scholar
  34. Katari MS, Balija V, Wilson RK et al (2005) Comparing low coverage random shotgun sequence data from Brassica oleracea and Oryza sativa genome sequence for their ability to add to the annotation of Arabidopsis thaliana. Genome Res 15:496–504CrossRefPubMedGoogle Scholar
  35. Koch MA, Haubold M, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498PubMedGoogle Scholar
  36. Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544CrossRefPubMedGoogle Scholar
  37. Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126CrossRefPubMedGoogle Scholar
  38. Kuittinen H, de Haan AA, Vogl C et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584CrossRefPubMedGoogle Scholar
  39. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  40. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910PubMedGoogle Scholar
  41. Lysak MA, Berr A, Pecinka A et al (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229CrossRefPubMedGoogle Scholar
  42. Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410CrossRefPubMedGoogle Scholar
  43. Lysak MA, Koch MA, Beaulieu JM et al (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98CrossRefPubMedGoogle Scholar
  44. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525CrossRefPubMedGoogle Scholar
  45. Moskal WA Jr, Wu HC, Underwood BA et al (2007) Experimental validation of novel genes predicted in the un-annotated regions of the Arabidopsis genome. BMC Genomics 8:18CrossRefPubMedGoogle Scholar
  46. Mun JH, Kwon SJ, Yang TJ et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111CrossRefPubMedGoogle Scholar
  47. Nah G, Pagliarulo CL, Mohr PG et al (2009) Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94:196–203CrossRefPubMedGoogle Scholar
  48. Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196CrossRefPubMedGoogle Scholar
  49. O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243CrossRefPubMedGoogle Scholar
  50. Ossowski S, Schneeberger K, Clark RM et al (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033CrossRefPubMedGoogle Scholar
  51. Oyama R, Clauss MJ, Formanová N et al (2008) The shrunken genome of Arabidopsis thaliana. Plant Syst Evol 273:257–271CrossRefGoogle Scholar
  52. Parkin IA, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781CrossRefPubMedGoogle Scholar
  53. Quiros CF, Grellet F, Sadowski J et al (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330PubMedGoogle Scholar
  54. Rana D, van den Boogaart T, O‘Neill CM et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733CrossRefPubMedGoogle Scholar
  55. Rossberg M, Theres K, Acarkan A et al (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13:979–988CrossRefPubMedGoogle Scholar
  56. Schein M, Yang Z, Mitchell-Olds T, Schmid K (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21:659–669CrossRefPubMedGoogle Scholar
  57. Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37CrossRefPubMedGoogle Scholar
  58. Schmidt R, Acarkan A, Boivin K et al (2003) The sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae. In: Nagata T, Tabata S (eds) Biotechnology in agriculture and forestry, vol 52, Brassica and Legumes, pp 19–36. Springer, Berlin/ HeidelbergGoogle Scholar
  59. Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321CrossRefPubMedGoogle Scholar
  60. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefPubMedGoogle Scholar
  61. Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165CrossRefPubMedGoogle Scholar
  62. Schranz ME, Windsor AJ, Song BH et al (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144:286–298 [Erratum in: Plant Physiol 144:1690]CrossRefPubMedGoogle Scholar
  63. Swarbreck D, Wilks C, Lamesch P et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36 (Database issue):D1009–D1014CrossRefPubMedGoogle Scholar
  64. Tang H, Bowers JE, Wang X et al (2008) Synteny and collinearity in plant genomes. Science 320:486–488CrossRefPubMedGoogle Scholar
  65. Town CD, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359CrossRefPubMedGoogle Scholar
  66. Trick M, Cheung F, Drou N et al (2009c) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50CrossRefPubMedGoogle Scholar
  67. Trick M, Kwon SJ, Choi SR et al (2009a) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539CrossRefPubMedGoogle Scholar
  68. Trick M, Long Y, Meng J et al (2009b) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346CrossRefPubMedGoogle Scholar
  69. U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452Google Scholar
  70. Wang R, Farrona S, Vincent C et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427CrossRefPubMedGoogle Scholar
  71. Warthmann N, Das S, Lanz C, Weigel D (2008) Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol 25:892–902CrossRefPubMedGoogle Scholar
  72. Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Bio 10:107CrossRefGoogle Scholar
  73. Windsor AJ, Schranz ME, Formanová N et al (2006) Partial shotgun sequencing of the Boechera stricta genome reveals extensive microsynteny and promoter conservation with Arabidopsis. Plant Physiol 140:1169–1182CrossRefPubMedGoogle Scholar
  74. Yang TJ, Kim JS, Kwon SJ et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347CrossRefPubMedGoogle Scholar
  75. Yang TJ, Kim JS, Lim KB et al (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics 6:138–146CrossRefPubMedGoogle Scholar
  76. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604CrossRefPubMedGoogle Scholar
  77. Yogeeswaran K, Frary A, York TL et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515CrossRefPubMedGoogle Scholar
  78. Zeller G, Clark RM, Schneeberger K et al (2008) Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Res 18:918–929CrossRefPubMedGoogle Scholar
  79. Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594CrossRefPubMedGoogle Scholar
  80. Zhou N, Robinson SJ, Huebert T et al (2007) Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer Thlaspi arvense. Plant Mol Biol 65:693–705CrossRefPubMedGoogle Scholar
  81. Ziolkowski PA, Koczyk G, Galganski L et al (2009) Genome sequence comparison of Col and Ler lines reveals the dynamic nature of Arabidopsis chromosomes. Nucleic Acids Res 37:3189–3201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.J. Craig Venter InstituteRockvilleUSA
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.John Innes Centre, Norwich Research ParkNorwichUK

Personalised recommendations