Advertisement

Perspectives on Genetics and Genomics of the Brassicaceae

  • Renate SchmidtEmail author
  • Ian Bancroft
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)

Abstract

The Arabidopsis thaliana genome project laid the foundation for the advancement of structural and functional genomics in this species which resulted in an ever-increasing understanding of a multitude of processes at the molecular level. Ongoing progress in high-throughput genome sequencing technologies will now allow for a boost of genome sequencing activities in various Brassicaceae species, accessions, and even populations. Such studies will provide unique insights into the evolution of plant genomes and may ultimately advance breeding of the Brassica crops. The development of genome-wide transcriptome analyses in Brassicaceae species other than A. thaliana will also heavily depend on the rapid advancement of cost-effective high-throughput sequencing technologies. Important contributions to fields as diverse as developmental biology, evolutionary biology, population genetics, plant physiology, and ecology can be expected since genetically tractable Brassicaceae species that are particularly suitable for the study of a specific trait and/or adaptation are currently developed as additional model systems.

Keywords

Brassicaceae Diploidisation Duplication Genome evolution Genome-wide transcriptome analysis Model system Next generation sequencing Polyploidy 

Abbreviations

BAC

Bacterial artificial chromosome

cDNA

Complementary DNA

dbEST

Expressed sequence tags database

EST

Expressed sequence tag

Gb

Giga base

GS FLX

Genome sequencer FLX

GS 20

Genome sequencer 20

MPSS

Massively parallel signature sequencing

RNAi

RNA interference

SAGE

Serial analysis of gene expression

siRNA

Small interfering RNA

SOLiD

Sequencing by oligonucleotide ligation and detection

SNP

Single nucleotide polymorphism

References

  1. Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12CrossRefPubMedGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141CrossRefPubMedGoogle Scholar
  4. Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435CrossRefPubMedGoogle Scholar
  5. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268CrossRefPubMedGoogle Scholar
  6. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691CrossRefPubMedGoogle Scholar
  7. Bowman JL (2006) Molecules and morphology: comparative developmental genetics of the Brassicaceae. Plant Syst Evol 259:199–215CrossRefGoogle Scholar
  8. Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051CrossRefPubMedGoogle Scholar
  9. Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefPubMedGoogle Scholar
  10. Bressan RA, Zhang C, Zhang H et al (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360CrossRefPubMedGoogle Scholar
  11. Cavell AC, Lydiate DJ, Parkin IA et al (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69CrossRefPubMedGoogle Scholar
  12. Chen ZJ, Pikaard CS (1997) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 11:2124–2136CrossRefPubMedGoogle Scholar
  13. Cheung F, Trick M, Drou N et al (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928CrossRefPubMedGoogle Scholar
  14. Earley K, Lawrence RJ, Pontes O et al (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293CrossRefPubMedGoogle Scholar
  15. Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  16. Gaeta RT, Pires JC (2010). Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28CrossRefPubMedGoogle Scholar
  17. Gaeta RT, Pires JC, Iniguez-Luy F et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417CrossRefPubMedGoogle Scholar
  18. Gaeta RT, Yoo SY, Pires JC et al (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS One 4:e4760CrossRefPubMedGoogle Scholar
  19. Girke T, Todd J, Ruuska S et al (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581CrossRefPubMedGoogle Scholar
  20. Goda H, Sasaki E, Akiyama K et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542CrossRefPubMedGoogle Scholar
  21. Gong Q, Li P, Ma S et al (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839CrossRefPubMedGoogle Scholar
  22. Ha M, Li WH, Chen ZJ (2007) External factors accelerate expression divergence between duplicate genes. Trends Genet 23:162–166CrossRefPubMedGoogle Scholar
  23. Haberer G, Hindemitt T, Meyers BC, Mayer KF (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022CrossRefPubMedGoogle Scholar
  24. Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669CrossRefGoogle Scholar
  25. Hammond JP, Bowen HC, White PJ et al (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260CrossRefPubMedGoogle Scholar
  26. Hammond JP, Broadley MR, Craigon DJ et al (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods 1:10CrossRefPubMedGoogle Scholar
  27. Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRefPubMedGoogle Scholar
  28. Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947CrossRefPubMedGoogle Scholar
  29. Inan G, Zhang Q, Li P et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737CrossRefPubMedGoogle Scholar
  30. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  31. Jenczewski E, Eber F, Grimaud A et al (2003) PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653PubMedGoogle Scholar
  32. Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363CrossRefPubMedGoogle Scholar
  33. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  34. Lawrence RJ, Earley K, Pontes O et al (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609CrossRefPubMedGoogle Scholar
  35. Lee SC, Lim MH, Kim JA et al (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cell 26:595–605Google Scholar
  36. Lee HS, Wang J, Tian L et al (2004) Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnol J 2:45–57CrossRefPubMedGoogle Scholar
  37. Lukens LN, Quijada PA, Udall J et al (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linnean Soc 82:665–674CrossRefGoogle Scholar
  38. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  39. Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723CrossRefPubMedGoogle Scholar
  40. Meyers BC, Lee DK, Vu TH et al (2004a) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813CrossRefPubMedGoogle Scholar
  41. Meyers BC, Tej SS, Vu TH et al (2004b) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653CrossRefPubMedGoogle Scholar
  42. Meyers BC, Vu TH, Tej SS et al (2004c) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011CrossRefPubMedGoogle Scholar
  43. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13CrossRefPubMedGoogle Scholar
  44. Mummenhoff K, Polster A, Mühlhausen A, Theißen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot 60:1503–1513CrossRefPubMedGoogle Scholar
  45. Mun JH, Kwon SJ, Yang TJ et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111CrossRefPubMedGoogle Scholar
  46. Ni Z, Kim ED, Ha M et al (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331CrossRefPubMedGoogle Scholar
  47. Obermeier C, Hosseini B, Friedt W, Snowdon R (2009) Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. BMC Genomics 10:29CrossRefGoogle Scholar
  48. O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243CrossRefPubMedGoogle Scholar
  49. Parkin IA, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781CrossRefPubMedGoogle Scholar
  50. Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131PubMedGoogle Scholar
  51. Pauwels M, Roosens N, Frérot H, Saumitou-Laprade P (2008) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Plant Biol 11:129–134CrossRefPubMedGoogle Scholar
  52. Peer WA, Mahmoudian M, Freeman JL et al (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260CrossRefPubMedGoogle Scholar
  53. Preuss SB, Costa-Nunes P, Tucker S et al (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673–684CrossRefPubMedGoogle Scholar
  54. Rana D, van den Boogaart T, O’Neill CM et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733CrossRefPubMedGoogle Scholar
  55. Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609CrossRefPubMedGoogle Scholar
  56. Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–765CrossRefPubMedGoogle Scholar
  57. Robinson SJ, Cram DJ, Lewis CT, Parkin IA (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol 136:3223–3233CrossRefPubMedGoogle Scholar
  58. Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215CrossRefPubMedGoogle Scholar
  59. Saha S, Sparks AB, Rago C et al (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512CrossRefPubMedGoogle Scholar
  60. Santuari L, Pradervand S, Amiguet-Vercher AM et al (2010) Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of short reads and tiling arrays. Genome Biol 11:R4CrossRefPubMedGoogle Scholar
  61. Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  62. Schranz ME, Kantama L, de Jong H, Mitchell-Olds T (2006a) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438CrossRefPubMedGoogle Scholar
  63. Schranz ME, Lysak MA, Mitchell-Olds T (2006b) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefPubMedGoogle Scholar
  64. Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165CrossRefPubMedGoogle Scholar
  65. Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175CrossRefPubMedGoogle Scholar
  66. Sharbel TF, Voigt ML, Corral JM et al (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882CrossRefPubMedGoogle Scholar
  67. Sharma N, Cram D, Huebert T et al (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171–184CrossRefPubMedGoogle Scholar
  68. Sharpe AG, Parkin IA, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121PubMedGoogle Scholar
  69. Slotte T, Holm K, McIntyre LM et al (2007) Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145:160–173CrossRefPubMedGoogle Scholar
  70. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723CrossRefPubMedGoogle Scholar
  71. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955CrossRefPubMedGoogle Scholar
  72. Town CD, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveals gene loss, fragmentation and dispersal following polyploidy. Plant Cell 18:1348–1359CrossRefPubMedGoogle Scholar
  73. Trick M, Cheung F, Drou N et al (2009a) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50CrossRefPubMedGoogle Scholar
  74. Trick M, Kwon S-J, Choi SR et al (2009b) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539CrossRefPubMedGoogle Scholar
  75. Trick M, Long Y, Meng J, Bancroft I (2009c) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346CrossRefPubMedGoogle Scholar
  76. Turner TL, Bourne EC, Von Wettberg EJ et al (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42:260–263CrossRefPubMedGoogle Scholar
  77. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979CrossRefPubMedGoogle Scholar
  78. van de Mortel JE, Almar Villanueva L, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRefPubMedGoogle Scholar
  79. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefPubMedGoogle Scholar
  80. Wang R, Farrona S, Vincent C et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427CrossRefPubMedGoogle Scholar
  81. Wang J, Tian L, Lee HS et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517CrossRefPubMedGoogle Scholar
  82. Weber M, Harada E, Vess C et al (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefPubMedGoogle Scholar
  83. Weber AP, Weber KL, Carr K et al (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42CrossRefPubMedGoogle Scholar
  84. Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107CrossRefPubMedGoogle Scholar
  85. Whittle CA, Krochko JE (2009) Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. Plant Cell 21:2203–2219CrossRefPubMedGoogle Scholar
  86. Wong CE, Li Y, Labbe A et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450CrossRefPubMedGoogle Scholar
  87. Wong CE, Li Y, Whitty BR et al (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574CrossRefPubMedGoogle Scholar
  88. Wu GZ, Shi QM, Niu Y et al (2008) Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res 36(Database issue):D1044–D1047PubMedGoogle Scholar
  89. Xiang D, Datla R, Li F et al (2008) Development of a Brassica seed cDNA microarray. Genome 51:236–242CrossRefPubMedGoogle Scholar
  90. Yang TJ, Kim JS, Kwon SJ et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLC region of Brassica rapa. Plant Cell 18:1339–1347CrossRefPubMedGoogle Scholar
  91. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.John Innes Centre, Norwich Research ParkNorwichUK

Personalised recommendations