Advertisement

Bioinformatics Resources for the Brassica Species

  • Martin TrickEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)

Abstract

The science of Brassica genomics is now at an exciting stage with capillary-based BAC-by-BAC sequencing of the Brassica rapa gene-space, combined with the application of next generation sequencing technologies, opening up new possibilities to relate genome-wide variation to traits with unprecedented resolution and cost-effectiveness. We are at the real beginnings of the translation of the fundamental discoveries being made every day in the Arabidopsis model system to a group of closely related crop genomes of global economic importance. It is imperative that the appropriate bioinformatics resources to allow navigation between these genomes and also an integration of the emerging B. rapa genome sequence with the genetic maps that underpin trait analysis are put in place. In this chapter the current status and future prospects for these bioinformatics infrastructures will be discussed.

Keywords

Bioinformatics Computational tools Gene annotation Next generation sequencing SNP discovery 

Notes

Acknowledgments

The author would like to acknowledge support from the UK Biotechnology and Biological Sciences Research Council (Grant BB/E017363/1 and Competitive Strategic Grant to the John Innes Centre).

References

  1. Anderson ML, Cardle L, Cartinhour S, et al (2000) UK cropnet: a collection of databases and bioinformatics resources for crop plant genomics. Nucl Acids Res 28:104–107CrossRefPubMedGoogle Scholar
  2. Ayele M, Haas BJ, Kumar N et al (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495CrossRefPubMedGoogle Scholar
  3. Bekkaoui F, Xiang D, Datla R et al. (2008) Development of Brassica seed cDNA microarray. http://www.intl-pag.org/14/abstracts/PAG14_P740.html
  4. Burge C, Karlin S (1997) Prediction of complete gene structures in humangenomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  5. Campbell MA, Haas BJ, Hamilton JP et al (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:327–344CrossRefPubMedGoogle Scholar
  6. Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res 31:3497–3500CrossRefPubMedGoogle Scholar
  7. Clamp M, Cuff J, Searle SM et al (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427CrossRefPubMedGoogle Scholar
  8. Flibotte S, Chiu R, Fjell C et al (2004) Automated ordering of fingerprinted clones. Bioinformatics 20:1264−1271CrossRefPubMedGoogle Scholar
  9. Gish W (1996–2008) WU-BLAST: http://blast.wustl.edu
  10. Goldberg SMD, Johnson J, Busam D, et al (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103:11240–11245CrossRefPubMedGoogle Scholar
  11. Haas BJ, Delcher AL, Mount SM, et al (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl Acids Res 31:5654–5666CrossRefPubMedGoogle Scholar
  12. Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 4:656–664Google Scholar
  13. Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5:59CrossRefPubMedGoogle Scholar
  14. LaDeana WH, Marth GT, Quinlan AR, et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188CrossRefGoogle Scholar
  15. Li H, Ruan J, Durbin R (2008) Mapping short DNA reads and calling variants using mapping quality scores. Genome Res 18:1851–1858CrossRefPubMedGoogle Scholar
  16. Love C, Logan E, Erwin T, et al (2006) Integrating and interrogating diverse Brassica data within an Ensembl structured database. Acta Hort (ISHS) 706:77–82Google Scholar
  17. Love CG, Robinson AJ, Lim GAC, et al (2005) Brassica ASTRA: an integrated database for Brassica genomic research. Nucl Acids Res 33:D656–D659CrossRefPubMedGoogle Scholar
  18. Lowe AJ, Moule C, Trick M, et al (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112CrossRefPubMedGoogle Scholar
  19. Luo MC, Thomas C, You FM, et al (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389CrossRefPubMedGoogle Scholar
  20. Majoros WH, Pertea M, Delcher AL, et al (2005) Efficient decoding algorithms for generalized hidden Markov model gene finders. BMC Bioinformatics 5:616Google Scholar
  21. Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879CrossRefPubMedGoogle Scholar
  22. Mun J-H, Kwon S-J, Yang T-J, et al (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9:280CrossRefPubMedGoogle Scholar
  23. Nelson WM, Dvorak J, Luo MC, et al (2007) Efficacy of clone fingerprinting methodologies. Genomics 89:160–165CrossRefPubMedGoogle Scholar
  24. Pampanwar V, Engler F, Hatfield J, et al (2005) FPC web tools for rice, maize and distribution. Plant Physiol 138:116–126CrossRefPubMedGoogle Scholar
  25. Park J, Koo DH, Hong CP, et al (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics 274:579–588CrossRefPubMedGoogle Scholar
  26. Parkin IAP, Gulden SM, Sharpe AG, et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781CrossRefPubMedGoogle Scholar
  27. Parkin IA, Sharpe AG, Keith DJ, et al (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131PubMedGoogle Scholar
  28. Pertea G, Huang X, Liang F, et al (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefPubMedGoogle Scholar
  29. Priestly M, et al. (2002) Grid Map. http://cbr.jic.ac.uk/dicks/software/Grid_Map/
  30. Rana D, van den Boogaart T, O’Neill CM, et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733CrossRefPubMedGoogle Scholar
  31. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJGoogle Scholar
  32. Rusholme RL, Higgins EA, Walsh JA, et al (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 2007(88):3177–3186CrossRefGoogle Scholar
  33. Sharpe AG, Parkin IAP, Keith DJ, et al (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121PubMedGoogle Scholar
  34. Soderlund C, Humphray S, Dunham I, et al (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 11:934–941Google Scholar
  35. Stanke M, Waack S (2003) Gene prediction with a hidden-Markov model and a new intron submodel. Bioinformatics 19(2):ii215–ii225CrossRefPubMedGoogle Scholar
  36. Stein LD, Mungall C, Shu S, et al (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610CrossRefPubMedGoogle Scholar
  37. Stein LD, Thierry-Mieg J (1999) AceDB: a genome database management system. Comput Sci Eng 1:44–52CrossRefGoogle Scholar
  38. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  39. Thierry-Mieg J, Stein LD (1998) Scriptable access to the Caenorhabditis elegans genome sequence and other ACEDB databases. Genome Res 8:1308–1315PubMedGoogle Scholar
  40. Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/ CEH Oxford, Mansfield Road, Oxford OX1 3SR
  41. Town CD, Cheung F, Maiti R, et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveals gene loss, fragmentation and dispersal following polyploidy. Plant Cell 18:1348–1359CrossRefPubMedGoogle Scholar
  42. Trick M, Cheung F, Drou N, et al (2009a) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50CrossRefPubMedGoogle Scholar
  43. Trick M, Kwon S-J, Choi SR, et al (2009c) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics [in press]Google Scholar
  44. Trick M, Long Y, Meng J, et al (2009b) SNP discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346CrossRefPubMedGoogle Scholar
  45. Wobus F, et al (2001) Image. http://www.sanger.ac.uk/Software/Image/
  46. Xiang D, Yongguo C, Schwab D, et al. (2008) High density Combimatrix Brassica oligo microarray. http://www.intlpag.org/16/abstracts/PAG16_P07a_708.html
  47. You FM, Luo MC, Gu YQ, et al (2007) GenoProfiler: batch processing of high-throughput capillary fingerprinting data. Bioinformatics 23:240–242CrossRefPubMedGoogle Scholar
  48. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Computational and Systems Biology DepartmentJohn Innes Centre, Norwich Research ParkNorwichUK

Personalised recommendations