Advertisement

Transformation Technology in the Brassicaceae

  • Penny A.C. SparrowEmail author
  • Cassandra M.P. Goldsack
  • Lars Østergaard
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)

Abstract

With the accelerating advances in Brassicaceae genetics and genomics, transformation technologies are now routinely being exploited to elucidate gene function as well as contributing to the development of novel enhanced crops. Agrobacterium-mediated transformation remains the most broadly used approach for the introduction of transgenes into Brassicaceae. For Arabidopsis thaliana, in planta transformation is now routinely employed using the relatively low-tech approach of floral dipping. The relative ease of producing independent transgenic lines using this approach has been exploited to create T-DNA insertion mutants or knockout lines for most Arabidopsis genes. In Brassica, transformation relies mainly on in vitro transformation methods, and yet despite the significant progress made towards enhancing transformation efficiencies, some genotypes remain recalcitrant to transformation. Advances in our understanding of the genetics behind transformation have enabled researchers to identify more readily transformable genotypes for use in routine high-throughput systems. These developments open up exciting new avenues to exploit model Brassica genotypes as resources for understanding gene function in complex genomes. Although many other Brassicaceae have served as model species for improving plant regeneration and transformation systems, this chapter focuses on the recent technologies employed for both Arabidopsis and Brassica transformation.

Keywords

Brassica Brassicaceae Transformation Testing gene function 

References

  1. Alaska-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 24:649–654CrossRefGoogle Scholar
  2. Alonso JM, Stepanova AN, Leisse TJ (2003) Genomewide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  3. Altmann T, Damm B, Frommer WB, Martin T, Morris PC, Schweizer D, Willmitzer L, Schmidt R (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13: 652–656Google Scholar
  4. An, G, Watsen BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305PubMedCrossRefGoogle Scholar
  5. Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188CrossRefGoogle Scholar
  6. Bailey MA, Boerma HR, Parrott WA (1994) Inheritance of Agrobacterium tumefaciens-induced tumorigenesis of soybean. Crop Sci 34:514–519CrossRefGoogle Scholar
  7. Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 10:308–314CrossRefGoogle Scholar
  8. Barsby TL, Yarrow SA, Shepard JF (1986) A rapid and efficient alternative procedure for the regeneration of plants from hypocotyl protoplasts of Brassica napus. Plant Cell Rep 5:101–103CrossRefGoogle Scholar
  9. Bartholmes C, Nutt P, Theiβen G (2008) Germline transformation of Shepherd’s purse (Capsella bursa-pastoris) by the ‘floral dip’ method as a tool for evolutionary and developmental biology. Gene 409:11–19PubMedCrossRefGoogle Scholar
  10. Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High throughput agrobacterium-mediated barley transformation. Plant Methods 4:22PubMedCrossRefGoogle Scholar
  11. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l’Académie des Sciences, Sciences de la Vie 316:1194–1199Google Scholar
  12. Bent A (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana press, Totowa, NJGoogle Scholar
  13. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedCrossRefGoogle Scholar
  14. Bhalla PL, Singh M (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 2:181–189CrossRefGoogle Scholar
  15. Bhalla PL, Smith N (1998) Agrobacterium-mediated transformation of Australian cultivars of cauliflowers, Brassica oleracea var botrytis. Mol Breed 4:531–541CrossRefGoogle Scholar
  16. Bliss FA, Almehdi AA, Dandekar AM, Schuerman PL, Bellaloui N (1999) Crown gall resistance in accessions of 20 Prunus species. HortScience 34:206–209Google Scholar
  17. Burnett L, Arnoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon explants of Brassica rapa ssp. oleifera through pretreatment with auxin and cytokinin and use of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253–256Google Scholar
  18. Byzova M, Verduyn C, de Brouwer D, de Block M (2004) Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA mediated gene silencing technology in an organ-specific manner. Planta 218:379–387PubMedCrossRefGoogle Scholar
  19. Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141CrossRefGoogle Scholar
  20. Cardoza V, Stewart N (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604PubMedGoogle Scholar
  21. Cardoza V, Stewart N (2004) Invited review: Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551CrossRefGoogle Scholar
  22. Cardoza V, Stewart N (2006) Canola (Brassica napus L.). In: Wang K (ed) Agrobacterium protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJGoogle Scholar
  23. Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and preventing pod shatter in oilseed rape. Mol Breed 15:87–94CrossRefGoogle Scholar
  24. Chi GL, Barfield DG, Sim GE, Pua EC (1990) Effect of AgNO3 and aminovinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9:195–198CrossRefGoogle Scholar
  25. Chi GL, Pua EC (1989) Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci 64:243–250CrossRefGoogle Scholar
  26. Cho H, Cao J, Ren J, Earle E (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. Pekinensis) transformed with a synthetic bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7CrossRefGoogle Scholar
  27. Christey MC (2001) Use of RI-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700CrossRefGoogle Scholar
  28. Christey MC, Braun RH (2007) Vegetable Brassicas. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Vegetable crops, vol 7. Wiley-BlackwellGoogle Scholar
  29. Christey MC, Braun RH, Reader JK (1999) Field performance of transgenic vegetable Brassicas (B. oleracea and B. rapa) transformed with Agrobacterium rhizogenes. Sabrao. J Breed Genet 31:93–108Google Scholar
  30. Christey MC, Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. HortScience 26:1069–1072Google Scholar
  31. Christey MC, Sinclair BK (1992) Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 82:161–192CrossRefGoogle Scholar
  32. Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593CrossRefGoogle Scholar
  33. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  34. Cogan NOI, Newbury HJ, Oldacres AM, Lynn JR, Kearsey MJ, King GJ, Phuddephat IJ (2004) Identification and characterization of QTL controlling Agrobacterium mediated transient and stable transformation of Brassica oleracea. Plant Biotechnol J 2:59–69PubMedCrossRefGoogle Scholar
  35. Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457PubMedCrossRefGoogle Scholar
  36. Damm B, Scmidt R, Willmitz L (1989) Efficient transformation of Arabidopsis thaliana using direct gene transfer to protoplasts. Mol Gen Genet 217:6–12PubMedCrossRefGoogle Scholar
  37. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586PubMedCrossRefGoogle Scholar
  38. David C, Tempe J (1988) Genetic transformation of cauliflower (Brassica oleracea L. var. Botrytis) by Agrobacterium rhizogenes. Plant Cell Rep 7:88–91CrossRefGoogle Scholar
  39. De Block M, Tenning P, de Brouwer D (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701PubMedCrossRefGoogle Scholar
  40. DeCook R, Lall S, Nettleton D, Howell S (2006) Genetic regulation of gene expression during shoot development in Arabisopsis. Genetics 172:1155–1164PubMedCrossRefGoogle Scholar
  41. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904PubMedCrossRefGoogle Scholar
  42. Dhinrga A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101(6315):6320Google Scholar
  43. Eapen S, George L (1996) Enhancement in shoot regeneration from leaf discs of Brassica juncea L. Czern and Coss by silver nitrate and silver thiosulfate. Physiol Mol Biol Plants 2:83–86Google Scholar
  44. Eapen S, George L (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver nitrate and silver thiosulfate. Plant Cell Tissue Organ Cult 51:228–232CrossRefGoogle Scholar
  45. Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret and leaf senescence in Brassica oleracea. Plant Mol Biol 57:645–657PubMedCrossRefGoogle Scholar
  46. Ecker JR, Davis RW (1986) Inhibition of gene-expression in plant-cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372–5376PubMedCrossRefGoogle Scholar
  47. Eimert K, Siegemund F (1992) Transformation of cauliflower (Brassica oleracea L. var. botrytis) – an experimental survey. Plant Mol Biol 19:485–490PubMedCrossRefGoogle Scholar
  48. Feldman KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9CrossRefGoogle Scholar
  49. Ferrándiz C, Liljegren SJ, Yanofky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438PubMedCrossRefGoogle Scholar
  50. Fobis-Loisy I, Chambrier P, Gaude T (2007) Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues. Plant Cell Rep 26:745–753PubMedCrossRefGoogle Scholar
  51. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulating microRNA activity. Nat Genet 39:1033–1037PubMedCrossRefGoogle Scholar
  52. Gasic K, Korban SS (2006) Indian mustard [Brassica juncea (L.) Czern]. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana Press, Totowa, NJGoogle Scholar
  53. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedCrossRefGoogle Scholar
  54. Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant 61:38–44CrossRefGoogle Scholar
  55. Gupta V, Lakshmi Sita G, Shaila MS, Jagannathan V (1993) Genetic transformation of Brassica nigra by Agrobacterium based vector and direct plasmid uptake. Plant Cell Rep 12:418–421CrossRefGoogle Scholar
  56. Halfhill M, Millwood RJ, Raymer PL, Stewart C Jr (2002) Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ Biosafety Res 1:19–28PubMedCrossRefGoogle Scholar
  57. Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5(10):446–451PubMedCrossRefGoogle Scholar
  58. Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separate vir and T region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180CrossRefGoogle Scholar
  59. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T DNA. J Bacteriol 168:1291–1301PubMedGoogle Scholar
  60. Horiguchi G (2004) RNA silencing in plants: a shortcut to functional analysis. Differentiation 72:65–73PubMedCrossRefGoogle Scholar
  61. Hou B, Zhou Y, Wan L, Zhang Z, Shen G, Chen Z, Hu, Z (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114PubMedCrossRefGoogle Scholar
  62. James C (2007) Global status of commercialized biotech/GM crops: Brief No. 37. ISAAA, Ithaca, NYGoogle Scholar
  63. Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Biol Plant 36:231–237CrossRefGoogle Scholar
  64. Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285–297PubMedCrossRefGoogle Scholar
  65. Kamal GB, Lllich KG, Asadollah A (2007) Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr J Biotechnol 6:861–867Google Scholar
  66. Keller WA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55:1383–1388CrossRefGoogle Scholar
  67. Ketaeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27:149–154CrossRefGoogle Scholar
  68. King GJ (2006) Utilization of Arabidopsis and Brassica genomic resources to underpin genetic analysis and improvement of Brassica crops. In: Varshney RK, Koebner RMD (eds) Model plants: crop improvement. CRC Press, Boca Raton, FLGoogle Scholar
  69. Klimazewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4:83–197CrossRefGoogle Scholar
  70. Kojima M, Sparthana P, Teixeira da Silva JA, Nogawa M (2006) Development of in planta transformation methods using Agrobacterium tumefaciens. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, Isleworth, UKGoogle Scholar
  71. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174PubMedCrossRefGoogle Scholar
  72. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  73. Kuvshinov V, Koivu K, Kanera A, Perhu E (1999) Agrobacterium tumefaciens mediated transformation of greenhouse-grown Brassica rapa ssp. Oleifera. Plant Cell Rep 18:733–777CrossRefGoogle Scholar
  74. Lall S, Nettleton D, Decook R, Che P, Howell S (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883–1892PubMedCrossRefGoogle Scholar
  75. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation−competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967PubMedCrossRefGoogle Scholar
  76. Lee MK, Kim HS, Kim JS, Kim SH, Park YD (2004) Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J Plant Biol 47:300–306CrossRefGoogle Scholar
  77. Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769:455–461PubMedGoogle Scholar
  78. Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309–317PubMedCrossRefGoogle Scholar
  79. Litcher R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Plant Physiol (formally Z. Pflanzenphysiol) 105:427–434Google Scholar
  80. Liu F, Cao MQ, Yao L, Robaglia C, Tourneur C (1998) In Planta transformation of pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192Google Scholar
  81. Liu C, Lin C, Chen JJW, Tseng M (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744PubMedCrossRefGoogle Scholar
  82. Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234:464–466PubMedCrossRefGoogle Scholar
  83. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  84. Mauro AO, Pfeiffer TW, Collins GB (1995) Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Sci 35:1152–1156CrossRefGoogle Scholar
  85. Mehra S, Pareek A, Bandyopadhyay P, Sharma P, Burma PK, Pental D (2000) Development of transgenics in Indian oilseed mustard (Brassica juncea) resistant to herbicide phosphinothricin. Curr Sci 78:1358–1364Google Scholar
  86. Metz T, Roush R, Tang J, Shelton A, Earle E (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1:309–317CrossRefGoogle Scholar
  87. Mietkiewska E, Hoffman TL, Brost JM (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627CrossRefGoogle Scholar
  88. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232PubMedCrossRefGoogle Scholar
  89. Moloney MM, Walker JM, Sharma KK (1989) High-efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242CrossRefGoogle Scholar
  90. Mukhopadhyay A, Topfer R, Pradhan AK, Sodhi YS, Steinbiss HH, Schell J, Pental D (1991) Efficient regeneration of Brassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep 10:375–379Google Scholar
  91. Murata M, Orton TJ (1987) Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Cult 11:111–123CrossRefGoogle Scholar
  92. Nam J, Mysore KS, Zheng C, Knue MK, Matthysse G, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438PubMedCrossRefGoogle Scholar
  93. Nam J, Matthysse AG, Gelvin SB (1997) Diferences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333Google Scholar
  94. Narasimhulu SB, Chopra VL (1988a) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7:104–106CrossRefGoogle Scholar
  95. Narasimhulu SB, Kirti PB, Mohapatra T, Prakash S, Chopra VL (1992) Shoot regeneration in stem explants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359–362Google Scholar
  96. Narasimhulu SB, Prakash S, Chopra VL (1988b) Comparative shoot regeneration responses of diploid brassicas and their synthetic amphidiploid products. Plant Cell Rep 7:525–527CrossRefGoogle Scholar
  97. Nugent GD, Coyne S, Ngyuen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142CrossRefGoogle Scholar
  98. Ono Y, Takahata Y (2000) Genetic analysis of shoot regeneration from cotyledonary explants in Brassica napus. Theor Appl Genet 100:895–898CrossRefGoogle Scholar
  99. Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L). Plant Cell Rep 14:13–17CrossRefGoogle Scholar
  100. Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol 1:12–20Google Scholar
  101. Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter resistant fruit produced by ectopic expression of the FRUITFULL gene in Brassica juncea. Plant Biotechnol 4:45–51CrossRefGoogle Scholar
  102. Østergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696PubMedCrossRefGoogle Scholar
  103. Palmer CE (1992) Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant Cell Rep 11:541–545CrossRefGoogle Scholar
  104. Peng J, Hodes TK (1989) Genetic analysis of plant regeneration in rice (Oryza sativa). In Vitro Cell Dev Biol Plant 25:91–94CrossRefGoogle Scholar
  105. Phogat SK, Burma PK, Pental D (2006) High frequency regeneration of Brassica napus varieties and genetic transformation of stocks containing fertility restorer genes of two cytoplasmic male sterility systems. Plant Biochem Biotechnol 9:73–79Google Scholar
  106. Phogat SK, Burma PK, Pental D (2000) High frequency regeneration of Brassica napus varieties and genetic transformation stocks containing fertility restorer genes for two cytoplasmic male sterility systems. J Plant Biochem Biotechnol 9:73–79Google Scholar
  107. Price JS, Hobson RN, Neale MA, Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J Agric Eng 65:83–191Google Scholar
  108. Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474CrossRefGoogle Scholar
  109. Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242CrossRefGoogle Scholar
  110. Puddephat IJ, Thompson N, Robinson HT Sandhu P, Henderson J (1999) Biolistic transformation of broccoli (Brassica oleracea var. Italica) for transient expression of the β-glucuronidase gene. J Hortic Sci Biotechnol 74:714–720Google Scholar
  111. Purity RS, Gautam K, Singla-Pareek SL (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49CrossRefGoogle Scholar
  112. Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72CrossRefGoogle Scholar
  113. Radchuck V, Ryschka U, Schumann G, Klocke E (2002) Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. Physiol Plant 114:429–438CrossRefGoogle Scholar
  114. Radke SE, Turner JC, Facciotti D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep 11:499–505CrossRefGoogle Scholar
  115. Ramachandran S, Buntin G, All J, Raymer P, Stewart C Jr (1998a) Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomol Exp Appl 88:17–24CrossRefGoogle Scholar
  116. Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132Google Scholar
  117. Schiantarelli E, De la Pena A, Candela M (2001) Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Biomed Life Sci 102:335–341Google Scholar
  118. Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7:583–586CrossRefGoogle Scholar
  119. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial micoRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCrossRefGoogle Scholar
  120. Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238–253PubMedCrossRefGoogle Scholar
  121. Sikdar S, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24CrossRefGoogle Scholar
  122. Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309CrossRefGoogle Scholar
  123. Somerville C, Koorneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889PubMedCrossRefGoogle Scholar
  124. Sparrow PAC, Dale PJ, Irwin JA (2004a) The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation. Plant Cell Rep 23:64–70PubMedCrossRefGoogle Scholar
  125. Sparrow PAC, Dale PJ, Irwin JA (2006b) Brassica oleracea. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJGoogle Scholar
  126. Sparrow PAC, Irwin JA, Goldsack CM, Østergaard L (2007) Brassica transformation: commercial application and powerful research tool. Transgenic Plant J 1:330–339Google Scholar
  127. Sparrow PAC, Snape JW, Dale PJ, Irwin JA (2006a) The rapid identification of B. napus genotypes, for high-throughput transformation, using phenotypic tissue culture markers. Acta Hortic 706:239–247Google Scholar
  128. Sparrow PAC, Townsend T, Dale PJ, Irwin JA (2004b) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brasssica oleracea. Theor Appl Genet 108:664–650Google Scholar
  129. Sparrow PAC, Townsend T, Morgan CL, Arthur AE, Dale PJ, Irwin JA (2004c) Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet 108:1249–1255PubMedCrossRefGoogle Scholar
  130. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833PubMedCrossRefGoogle Scholar
  131. Stewart C Jr, Adang M, All J, Raymer P, Ramachandran S, Parrott W (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:115–120CrossRefGoogle Scholar
  132. Stewart CN Jr, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol Ecol 6:773–779Google Scholar
  133. Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23:121–126Google Scholar
  134. Tang GX, Zhou WJ, Li HZ, Mao BZ, He ZH, Yoneyama K (2003) Medium, explant and genotype factors influencing shoot regneration in oilseed Brassica spp. J Agron Crop Sci 189:351–358CrossRefGoogle Scholar
  135. Taylor CG, Fuchs B, Collier R, Lutke WK (2006) Generation of composite plants using Agrobacterium rhizogenes. In: Wang K (ed) Agrobacterium Protocols, vol 1, 2nd edn. Humana press, Totowa, NJGoogle Scholar
  136. Trick M, Bancroft I, Lim Y-P (2007) The Brassica rapa genome sequencing initiative. Genes Genomes Genomics 1:35–39Google Scholar
  137. Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) V site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023PubMedCrossRefGoogle Scholar
  138. Valvekens D, Van Montagu, M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540PubMedCrossRefGoogle Scholar
  139. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol 43:383–403CrossRefGoogle Scholar
  140. Verma SS, Chiinnusarny V, Bansal KC (2008) A simplified floral dip method for transformation of Brassica napus and B-carinata. J Plant Biochem Biotechnol 17:197–200Google Scholar
  141. Verma R, Singh RR (2007) Regeneration and in vitro flowering in Brassica Campestris (L.) Var. Bhavani. Our Nature 5:21–24Google Scholar
  142. Wahlroos T, Susi P, Tylkina L, Malyshenko S, Zvereva S, Korpela T (2003) Agrobacterium-mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiol Biochem 41:733–778CrossRefGoogle Scholar
  143. Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281PubMedCrossRefGoogle Scholar
  144. Xiang Y, Wong WKR, Ma MC, Wong RSC (1999) Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:251–256Google Scholar
  145. Xiang Y, Wong WKR, Ma MC, Wong RSC (2000) Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:251–256CrossRefGoogle Scholar
  146. Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sci Lett 24:117–121CrossRefGoogle Scholar
  147. Xu H, Wang X, Zhao H, Liu F (1998) An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep 27:1369–1376CrossRefGoogle Scholar
  148. Yan JY, He YK, Cao JS (2004) Factors affecting transformation efficiency by micro-injecting Agrobacterium into flower bud of Chinese cabbage. Agric Sci China 3:44–51Google Scholar
  149. Yan JY, HeY K, Cao JS (2003) Transformation of Chinese cabbage (Brassica rapa L. ssp. pekinensis) by Agrobacterium micro-injection into flower bud. Agric Sci China 2:906–911Google Scholar
  150. Yang MZ, Jia SR, Pua EC (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tissue Organ Cult 24:79–82CrossRefGoogle Scholar
  151. Yang ZH, Jin H, Plaha P, Woong BT, Jiang GB, Woo JG, Yun HD, Lim YP, Lee HY (2004) An improved regeneration protocol using cotyledonary explants from inbred lines of Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Biotechnol 6:235–239Google Scholar
  152. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257PubMedCrossRefGoogle Scholar
  153. Yu B, Lydiate DJ, Young LW, Scha¨fer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by down regulating lycopene epsilon cyclase. Transgenic Res 17:573–585PubMedCrossRefGoogle Scholar
  154. Zhandong Y, Shuangyi Z, Qiwei H (2007) High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci 172:920–929CrossRefGoogle Scholar
  155. Zhang Y, Bhalla PL (2004) In vitro shoot regeneration from commercial cultivars of Australian canola (Brassica napus L.). Aus J Agric Res 55:753–756CrossRefGoogle Scholar
  156. Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 19:569–575CrossRefGoogle Scholar
  157. Ziv M (1991) Quality of micropropagated plants—vitrification. In Vitro Cell Dev Biol Plant 27:64–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Penny A.C. Sparrow
    • 1
    Email author
  • Cassandra M.P. Goldsack
    • 1
  • Lars Østergaard
    • 2
  1. 1.John Innes Centre, Norwich Research ParkNorwichUK
  2. 2.John Innes CentreNorwichUK

Personalised recommendations