The Genetics of Brassica napus

  • Federico L. Iniguez-LuyEmail author
  • Maria L. Federico
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)


Brassica napus L. belongs to the Brassicaceae family of the Kingdom Plantae and is considered to be a newly formed species (5,000–10,000 mya) probably originating from independent and spontaneous inter-specific hybridizations between genotypes of turnip rape (Brassica rapa; AA, 2n = 20) and cabbage/Kale (Brassica oleracea; CC, 2n = 18). Genetically, B. napus is an allopolyploid (AACC, 2n = 38) exhibiting disomic inheritance. Within the species, two botanical varieties have been defined: B. napus L. var rapifera (DC) Metzger (2n = 4×= 38) and B. napus L. var oleifera Delile (2n = 4×= 38). The latter has taken much of the attention and has become the second most cultivated oilseed crop (rapeseed) worldwide, after soybean. The appearance of annual and biannual rapeseed lines with low erucic acid (<2% in the oil) and low glucosinolates (<30 mg/g in the meals) has granted rapeseed CanOLA (Canadian Oil Low Acid) status as an excellent source for edible vegetable oil. The lipid profile of CanOLA oil is extremely well balanced (low in saturated fats, high in monosaturated fats, and rich in omega-3 fatty acids) making it the oil of preference by nutritionists worldwide. In this context, the commercial interest for rapeseed CanOLA has launched an impressive amount of genetics and genomics research which has made possible to make genetic gains in agronomical and quality traits through modern plant breeding. In fact, rapeseed ranks among the top crops for which molecular tools have been developed. To date, over 30 molecular linkage maps have been published using a range of different molecular marker types, population structures, and parental lines exhibiting different flowering time behaviors. These maps have proved extremely useful in order to dissect the genetic nature of the traits underlying the genetic variation found in rapeseed. This chapter will focus on the genetics and genomics aspects of rapeseed breeding describing the current knowledge on the origin of B. napus, genetics/genomic tools for the species, and specific target traits affecting B. napus oil production and quality.


Brassica napus Origin Oilseed crop Genetic and genomic resources Agronomical and nutritional traits 



Amplified fragment length polymorphisms


Antinutritional factors


Canadian oil low acid




Doubled haploid


Deoxyribonucleic acid


Expressed sequence tags


First filial generation


Second filial generation


Fatty acid


Fatty acid desaturase


Fatty acid elongase


Fluorescence in situ hybridization


Flowering locus C




General combining ability


Genomic in situ hybridization




High erucic acid rapeseed


Homoeologous non-reciprocal translocations


High oleic


Homoeologous reciprocal translocations


High stearic


Low erucic acid rapeseed


Low linolenic


Marker-assisted selection


Microarray-based genomic selection


Million metric tons


messenger Ribonucleic Acid


Next generation sequencing


Near-infrared reflectance spectroscopy


Non-reciprocal translocations


Open pollinated


Polymerase chain reaction


Quantitative trait loci


Randomly amplified polymorphic DNA


Restriction fragment length polymorphisms


Recombinant inbred lines


Reciprocal translocation


Stearoyl-acyl desaturase


Specific combining ability


Sequenced characterized amplified regions


Single nucleotide polymorphisms


Sequence-related amplified polymorphism


Simple sequence repeats



The authors gratefully acknowledge the Agri aquaculture Nutritional Genomic Center (CGNA) for support on the development of a B. napus breeding program and Fondecyt 1090726 and 1100732 for supporting the research related to carotenoid content enhancement and SNP discovery in B. napus, respectively.


  1. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Charles J, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905PubMedCrossRefGoogle Scholar
  2. Allard RW (1999) Principals of plant breeding, 2nd edn. Wiley, New York, NYGoogle Scholar
  3. Allender C, Evered C, Lynn J, King G (2005) Tracing the origins of Brassica napus using chloroplast microsatellites. In: Plant and Animal Genomes XIII Conference. Book of Abstract p. 411Google Scholar
  4. Altenbach SB, Kuo CC, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 26:1115–1124Google Scholar
  5. Amar S, Ecke W, Becker HC, Möllers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with two erucic acid genes. Theor Appl Genet 116:1051–1061PubMedCrossRefGoogle Scholar
  6. Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158PubMedCrossRefGoogle Scholar
  7. Applequist LA, Ohlson R (1972) Rapeseed. Elsevier, MO, USAGoogle Scholar
  8. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326PubMedCrossRefGoogle Scholar
  9. Auld DL, Heikkinen MK, Erickson DA, Sernyk JL, Romero JE (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662CrossRefGoogle Scholar
  10. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665PubMedGoogle Scholar
  11. Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C Genome. Plant Phys 144:1827–1842CrossRefGoogle Scholar
  12. Barret P, Delourme R, Brunel D, Jourdren C, Horvais R, Renard M (1999) Low linolenic acid level in rapeseed can be easily assessed through the detection of two single base substitution in fad3 genes. In: Proceeding of the 10th International Rapeseed Congress, Canberra, Australia pp. 26–29.Google Scholar
  13. Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587CrossRefGoogle Scholar
  14. Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67CrossRefGoogle Scholar
  15. Bell JM (1993) Factors affecting the nutritional value of canola meal. Can J Anim Sci 73:679–697CrossRefGoogle Scholar
  16. Best MM, Duncan CH, van Loon EJ, Wathens JD (1954) Lowering of serum cholesterol by the administration of plant sterol. Circulation 10:201–206PubMedGoogle Scholar
  17. Bhinu VS, Schäfer UA, Li R, Huang J, Hannoufa A (2009) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44PubMedCrossRefGoogle Scholar
  18. Boys EF, Roques SE, Evans N, Latunde-Dada AO, West JS, Fitt BDL (2007) Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot). Eur J Plant Pathol 118:307–321CrossRefGoogle Scholar
  19. Bradshaw JE, Griffiths DW (1990) Sugar content of swedes for stock-feeding. J Sci Food Agric 50:167–172CrossRefGoogle Scholar
  20. Brandle JE, McVetty PBE (1989) Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Sci 29:1191–1195CrossRefGoogle Scholar
  21. Brown G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272PubMedCrossRefGoogle Scholar
  22. Bundessortenamt (2005) Beschreibende Sortenliste 2005: Getreide, Mais, Ölfruchte, leguminosen (Groβkörnig) Hackfrucht (auβer Kartoffeln) Deutscher Landwirtschaffsverlag GmbH, Hannover, Germany.Google Scholar
  23. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48PubMedCrossRefGoogle Scholar
  24. Butruille DV, Guries RP, Osborn TC (1999a) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39:1491–1496CrossRefGoogle Scholar
  25. Butruille DV, Guries RP, Osborn TC (1999b) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964PubMedGoogle Scholar
  26. Buzza GC (1995) Plant breeding. In: Kimber DS, McGregor DI. (eds) Brassica oilseeds: production and utilization. CABI Publishing, Wallingford, CT, pp. 153–175Google Scholar
  27. Cai CC, Tu J, Fu TD, Chen BY (2008) The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russ J Genet 44:326–333Google Scholar
  28. Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet 117:1031–1040PubMedCrossRefGoogle Scholar
  29. Chen W, Zhang Y, Xueping Liu X, Baoyuan Chen B, Tu J, Tingdong F (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858PubMedCrossRefGoogle Scholar
  30. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131PubMedCrossRefGoogle Scholar
  31. Cheung WY, Champagne G, Hubert N, Landry BS (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94:569–582CrossRefGoogle Scholar
  32. Choi SR, Teakle GR, Prikshit P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  33. Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91:841–847CrossRefGoogle Scholar
  34. Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229–1231PubMedGoogle Scholar
  35. Damania AB, Valkoun J, Willcox G, Qualset CO (1997) The origins of agriculture and crop domestication: the harlan symposium. ICARDA, IPGRI, FAO and UC/GRCP Publishers, California, CAGoogle Scholar
  36. Delourme R, Bouchereau A, Hubert N, Renard M, Landry BS (1994) Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet 88:741–748CrossRefGoogle Scholar
  37. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345PubMedCrossRefGoogle Scholar
  38. Diederichsen E, Frauen M, Linders Enrico GA, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281CrossRefGoogle Scholar
  39. Diers BW, McVetty PBE, Osborn TC (1995) Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci 36:79–83CrossRefGoogle Scholar
  40. Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polimorphisms. Theor Appl Genet 88:662–668CrossRefGoogle Scholar
  41. Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475–478CrossRefGoogle Scholar
  42. Duvick DN (1984) Genetic contributions to yield gains of US hybrid maize. In Fehr WR (ed) Genetic contributions to yield gains of five major crop plants. Crop Science Society of America. Madison, WI, American Society of Agronomy, pp 1930–1980Google Scholar
  43. Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977CrossRefGoogle Scholar
  44. Falentin C, Brégeon M, Lucas MO, Deschamps M, Leprince F, Fournier MT, Delourme R, Renard M (2007) Identification of fad2 mutations and development of allele-specific markers for high oleic acid content in rapeseed (Brassica napus L.) In: Proceeding of the 12th International Rapeseed Congress, Wuhan, China, pp. 117–119Google Scholar
  45. Feng F, Liu P, Hong D, Yang G (2009) A major QTL associated with preharvest sprouting in rapeseed (Brassica napus L.). Euphytica 169:57–68CrossRefGoogle Scholar
  46. Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621CrossRefGoogle Scholar
  47. Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled haploid progeny. Theor Appl Genet 93:1017–1025CrossRefGoogle Scholar
  48. Food and Agriculture Organization of the United Nations (FAO) (2008) Food Outlook June 2008: Oilseeds, Oils and Meals, (http://
  49. Food and Drug Administration (1995) Code of Federal Regulations, Title 21, Food and Drugs, Part 184, “Direct Food Substances Affi rmed as Generally Recognized as Safe”, Sections 1555, as of April 1, 1995. US Government Printing Office, Washington, DCGoogle Scholar
  50. Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858CrossRefGoogle Scholar
  51. Fray MJP, Puangsomlee P, Goodrich J, Coupland G, Evans EJ, Arthur AE, Lydiate DJ (1997) The genetics of stamenoid petal production in oils seed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. Theor Appl Genet 94:731–736CrossRefGoogle Scholar
  52. Fu TD (1995) Breeding and utilization of rapeseed hybrid. Hubei Science and Technology Press, Wuhan, pp 42–135Google Scholar
  53. Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Ma AF, Qu CM, Jiang L, Zhang ZS, Li JN (2007) Localization of QTLs for husk proportion and lignin content using a high-density genetic linkage map of Brassica napus. Korean J Genet 29:343–353Google Scholar
  54. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332PubMedCrossRefGoogle Scholar
  55. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotypic variation. Plant Cell 19:3403–3417PubMedCrossRefGoogle Scholar
  56. Gan Y, Malhi SS, Brandt SA, McDonald CL (2008) Assessment of seed shattering resistance and yield loss in five oilseed crops. Can J Plant Sci 88:267–270Google Scholar
  57. Ganal MW, Altmann T, Röder M (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217PubMedCrossRefGoogle Scholar
  58. Gao M, Li G, Bo Yang B, Qiu D, Farnham M, Quiros C (2007) High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115:277–287PubMedCrossRefGoogle Scholar
  59. Gomez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, The NetherlandsGoogle Scholar
  60. Graef GL, Fehr WR, Hammond EG (1985) Inheritance of three stearic acid mutants of soybean. Crop Sci 25:1076–1079CrossRefGoogle Scholar
  61. Grant I, Beversdorf WD (1985) Heterosis and combining ability estimates in springplanted oilseed rape (Brassica napus L.). Can J Genet Cytol 27:472–478Google Scholar
  62. Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60:986–990Google Scholar
  63. Guerche P, De Almeida ER, Schwarztein MA, Gander E, Krebbers E, Pelletier G (1990) Expression of the 2S albumin from Bertholletia excelsa in Brassica napus. Mol Gen Genet 221:306–314PubMedCrossRefGoogle Scholar
  64. Gupta SK, Pratap A (2007) History, origin and evolution. In: Gupta SK (ed) Advances in botanical research, incorporating advances in plant pathology, rapeseed breeding, vol 45. Academic Press-Elsevier, London, UK, pp 2–17Google Scholar
  65. Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus L.). Can J Plant Sci 44:104–111CrossRefGoogle Scholar
  66. Hasan V, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049PubMedCrossRefGoogle Scholar
  67. Hawkins DJ, Kridl JC (1998) Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752PubMedCrossRefGoogle Scholar
  68. He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18PubMedCrossRefGoogle Scholar
  69. Hougen FW, Stefansson BR (1983) Rapeseed, in advances in cereal science and technology, vol 5. American Association of Cereal Chemists, St. Paul, pp 261–289Google Scholar
  70. Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358PubMedCrossRefGoogle Scholar
  71. Howell PM, Sharpe AG, Lydiate DJ (2003) Homoelogous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460PubMedCrossRefGoogle Scholar
  72. Hu J, Li G, Struss D, Quiros C (1999) SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breed 118:145–150CrossRefGoogle Scholar
  73. Hu X, Sullivan-Gilbert M, Gupta M, Thompson S (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507PubMedCrossRefGoogle Scholar
  74. Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus L.) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138CrossRefGoogle Scholar
  75. Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and Brassica oleracea. Theor Appl Genet 120:31–43PubMedCrossRefGoogle Scholar
  76. Iniguez-Luy FL, Sass ME, Jung G, Johns MA, Nienhuis J (2006) Development of SCAR markers that distinguish the six cultivated Brassica species and sub-species of the U-triangle. American society of horticultural sciences. J Amer Soc Hort Sci 131:424–432Google Scholar
  77. Iniguez-Luy FL, Van de Voort A, Osborn TC (2008) Development of a set of SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985PubMedCrossRefGoogle Scholar
  78. International HapMap Consortium, Frazer K, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbolo P, et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861PubMedCrossRefGoogle Scholar
  79. Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hybrids between Brassica napus and camelina sativa with high linolenic acid content. Plant Cell Tiss Organ Cult 99:91–95CrossRefGoogle Scholar
  80. Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996a) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93:512–518CrossRefGoogle Scholar
  81. Jourdren C, Barret P, Horvais R, Delourme R, Renard M (1996b) Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90:351–357CrossRefGoogle Scholar
  82. Kelly AL, Sharpe AG, Nixon JH, Evans EJ, Lydiate DJ (1997) Indistinguishable patterns of recombination resulting from male and female meiosis in Brassica napus (oilseed rape). Genome 40:49–56PubMedCrossRefGoogle Scholar
  83. Kim JS, Chung TY, King GJ, Jin M, Yang T-J, Jin Y-M, Kim H-I, Park B-S (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39PubMedCrossRefGoogle Scholar
  84. Kimber DS, McGregor DI (1995) The species and their origins, cultivation and world production. In: Kimber DS, McGregor DI. (eds) Brassica oilseeds: production and utilization. CABI Publishing, Wallingford, CT, pp 1–9Google Scholar
  85. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Nat Acad Sci USA 89:2624–2628PubMedCrossRefGoogle Scholar
  86. Kohno-Murase J, Murase M, Ichiwaka H, Imamura J (1994) Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol Biol 26:1115–1124PubMedCrossRefGoogle Scholar
  87. Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and Brassica napus. Mol Breed 9:201–210CrossRefGoogle Scholar
  88. Koornneef M, Alonso-Blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phys 137:1–8CrossRefGoogle Scholar
  89. Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and rapeseed. production chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, NY, pp 193–210Google Scholar
  90. Kramer CC, Polewicz H, Osborn TC (2009) Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L. Mol Breed 24:419–431CrossRefGoogle Scholar
  91. Kumar R, Raclaru M, Schϋsseler T, Gruber J, Sadre R, Lϋhs W, Zharhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterization of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357–1364PubMedCrossRefGoogle Scholar
  92. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosomes fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  93. Lagercrantz U, Lydiate DJ (1996) Comparative mapping in Brassica. Genetics 144:1903–1910PubMedGoogle Scholar
  94. Lagercrantz U, Putterill J, Coupland G, Lydiate DJ (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20PubMedCrossRefGoogle Scholar
  95. Landry BS, Hubert N, Etoh T, Harada J, Lincoln S (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552Google Scholar
  96. Law M (2000) Plant sterol and stanol margarines and health. Br Med J 320:861–864CrossRefGoogle Scholar
  97. Li M, Chen X, Meng J (2006) Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from Brassica rapa and Cc from Brassica carinata. Crop Sci 46:234–242CrossRefGoogle Scholar
  98. Li G, Gao M, Yang B, Quiros CF (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168–180PubMedCrossRefGoogle Scholar
  99. Li Y, Ma C, Fu T, Yang G, Tu J, Chen Q, Wang T, Zhang X, Li C (2006) Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica 152:25–39CrossRefGoogle Scholar
  100. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  101. Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507CrossRefGoogle Scholar
  102. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with arabidopsis. Genetics 177:2433–2444PubMedGoogle Scholar
  103. MacKay T (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:30–39CrossRefGoogle Scholar
  104. Malabat C, Atterby H, Chaudhry Q, Renard M, Guéguen J (2003) Genetic variability of rapeseed protein composition. In: Sorensen H, Sorencen JC, Sorencen S, Bellostas Muguerza N, Bjegegaard C (eds) 11th international rapeseed congress. The Royal Veterinary and Agricultural University, Copenhagen, DNK, pp 205–208Google Scholar
  105. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  106. Mariani C, De Beuckeler M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Science 347:737–741Google Scholar
  107. Mariani C, Gossele V, De Beuckeler M, De Block M, Golberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature 357:384–387CrossRefGoogle Scholar
  108. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I (2005) Complexities of chromosome landing in a highly duplicated genome: towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988PubMedCrossRefGoogle Scholar
  109. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369PubMedCrossRefGoogle Scholar
  110. McNaughton IH, Thow RF (1972) Swedes and turnips. Field Crop Abs 25:1–12Google Scholar
  111. Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465CrossRefGoogle Scholar
  112. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedCrossRefGoogle Scholar
  113. Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. CR Biologies 331:763–771CrossRefGoogle Scholar
  114. Nissinen M, Gylling H, Vuoristo M, Miettinen TA (2002) Micellar distribution of cholesterol and phytoesterols after duodenal plant stanol ester infusion. Am J Physiol Gastrointest Liver Physiol 282:1009–1015Google Scholar
  115. Okou DT, Steinberg KM, Middle C, Cutler CD, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for highthroughput resequencing. Nat Methods 4:907–909PubMedCrossRefGoogle Scholar
  116. Olson M (2007) Enrichment of super-sized resequencing targets from the human genoma. Nat Methods 4:891–892PubMedCrossRefGoogle Scholar
  117. Osborn TC, Butruille DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003a) Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577PubMedGoogle Scholar
  118. Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129PubMedGoogle Scholar
  119. Osborn TC, Kramer CC, Graham E, Braun CJ (2007) Insights and innovations from wide crosses: examples from canola and tomato. Crop Sci 47:S228–S237CrossRefGoogle Scholar
  120. Osborn TC, Lukens L (2003) The molecular genetic basis of flowering time variation in Brassica species. In: Nagata T, Tabata S (eds) Biotechnology in agriculture and forestry. Brassica and legumes: from gene structure to breeding. Springer-Verlag, Berlin, pp. 69–86Google Scholar
  121. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003b) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147PubMedCrossRefGoogle Scholar
  122. Osorio J, Fernandez-Martinez J, Mancha M, Garces R (1995) Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 35:739–742CrossRefGoogle Scholar
  123. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781PubMedCrossRefGoogle Scholar
  124. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131PubMedGoogle Scholar
  125. Perez-Vich B, Leon AJ, Grondona M, Velasco L, Fernandez-Martinez JM (2006) Molecular analysis of the high stearic acid content in sunflower mutant CAS-14. Theor Appl Genet 112:867–875PubMedCrossRefGoogle Scholar
  126. Pilet ML, Delourme R, Foisset N, Renard M (1998a) Identification of loci contributing to quantitative Weld resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30CrossRefGoogle Scholar
  127. Pilet ML, Delourme R, Foisset N, Renard M (1998b) Identification of QTL involved in field resistance to light leaf spot (Pyrenopziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet 97:398–406CrossRefGoogle Scholar
  128. Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for Weld resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205CrossRefGoogle Scholar
  129. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523PubMedCrossRefGoogle Scholar
  130. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot 55:1–57Google Scholar
  131. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857PubMedCrossRefGoogle Scholar
  132. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80PubMedCrossRefGoogle Scholar
  133. Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. IdentiWcation of genomic regions from winter germplasm. Theor Appl Genet 113:549–561PubMedCrossRefGoogle Scholar
  134. Raclaru M, Gruber J, Kumar R, Sadre R, Lϋhs W, Zarhloul KM, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breed 18:93–107CrossRefGoogle Scholar
  135. Radoev M, Becker H, Ecke W ((2008)) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558PubMedCrossRefGoogle Scholar
  136. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  137. Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding 120:463–472CrossRefGoogle Scholar
  138. Rajcan I, Kasha K, Kott LS, Beversdorf WD (1999) Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica 105:173–181CrossRefGoogle Scholar
  139. Rakow G (1973) Selektion auf Linol- und Linolensäuregehalt in Rapssamen nach mutagener Behandlung. Z Planzen 69:205–209Google Scholar
  140. Ramsay LD, Bradshaw JE, Griffiths DW, Kearsey MJ (2001) The inheritance of quantitative traits in Brassica napus ssp. rapifera (Swedes): augmented triple test cross analyses of production characters. Euphytica 121:65–72CrossRefGoogle Scholar
  141. Rana D, Van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733PubMedCrossRefGoogle Scholar
  142. Renard M, Delourme R, Pierre J (1997) Market introduction of rapeseed hybrid varieties. GCIRC Bulletin 14:114–119Google Scholar
  143. Robert LS, Robson F, Sharpe A, Lydiate DJ, Coupland G (1998) Conserved structure and function of the Arabidopsis. flowering time gene CONSTANS in Brassica napus. Plant Mol 37:763–772CrossRefGoogle Scholar
  144. Ryder CD, Smith LB, Teakle GR, King GJ (2001) Contrasting genome organization: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome 44:808–817PubMedCrossRefGoogle Scholar
  145. Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2007) Identification of quantitative trait loci for resistance against verticillium longisporum in oilseed Rape (Brassica napus). Phytopathology 98:215–221CrossRefGoogle Scholar
  146. Schierholt A, Becker HC, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901CrossRefGoogle Scholar
  147. Schierholt A, Rϋcker B, Becker HC (2001) Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.). Crop Sci 41:1444–1449CrossRefGoogle Scholar
  148. Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci USA 105:411–416PubMedCrossRefGoogle Scholar
  149. Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246PubMedCrossRefGoogle Scholar
  150. Schranz ME, Quijada P, Sung S-B, Lukens L, Amasino RM, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468PubMedGoogle Scholar
  151. Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81CrossRefGoogle Scholar
  152. Sernyk JL, Stefansson BR (1983) Heterosis in summer rape (Brassica napus L.). Can J Plant Sci 63:407–413CrossRefGoogle Scholar
  153. Shahidi F (1990) Rapessed and canola: global production and distribution. In: Sahidi F (ed) Canola and rapeseed: production, chemistry and processing technology. Van Nostrand Reinhold, New York, NY, pp 3–13Google Scholar
  154. Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924CrossRefGoogle Scholar
  155. Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46:461–468PubMedCrossRefGoogle Scholar
  156. Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121PubMedGoogle Scholar
  157. Shewmaker C, Sheehy J, Daley M, Colburn S, Ke D (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412PubMedCrossRefGoogle Scholar
  158. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCrossRefGoogle Scholar
  159. Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time in Arabidopsis accessions. Plant Physiol 138:1163–1173PubMedCrossRefGoogle Scholar
  160. Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bello JM (1995) Quality characterisitics of yellow seeded Brassica seed meals: protein, carbohydrates, and dietary fiber components. J Agric Food Chem 43:2062–2066CrossRefGoogle Scholar
  161. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8CrossRefGoogle Scholar
  162. Snydera CL, Yurchenkoa OP, Silotoa R, Chena X, Liua Q, Mietkiewskaa E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16CrossRefGoogle Scholar
  163. Somers DJ, Rakow G, Prabhu VK, Friesen KRD (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44:1077–1082PubMedCrossRefGoogle Scholar
  164. Song KM, Osborn TC (1992) Polyphylatic origins of B. napus: new evidence based on organelle and nuclear RFLP analysis. Genome 35:992–1001Google Scholar
  165. Song KM, Osborn TC, Williams PH (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794CrossRefGoogle Scholar
  166. Song KM, Osborn TC, Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600CrossRefGoogle Scholar
  167. Song KM, Osborn TC, Williams PH (1997) Taxonomy based on nuclear RFLP analysis. In: Kalia HR, Gupta SK (eds) Recent advances in oilseed Brassicas. Kalyani Publishers, New Delhi, pp 12–24Google Scholar
  168. Song KM, Tang KL, Osborn TC (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 86:811–821CrossRefGoogle Scholar
  169. Starmer KP, Brown J, Davis JB (1998) Heterosis in spring canola hybrids grown in Northern Idaho. Crop Sci 38:376–380CrossRefGoogle Scholar
  170. Stiewe G, Witt U, Hansen S, Theis R, Abel WO, Röbbelen G (1995) Natural and experimental evolution of CMS for rapeseed breeding. Adv Plant Breeding 18:89–110Google Scholar
  171. Stringam GR, Ripley VL, Love HK, Mitchell A (2003) Transgenic herbicide tolerant canola. The Canadian experience. Crop Sci 43:1590–1593CrossRefGoogle Scholar
  172. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  173. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317PubMedCrossRefGoogle Scholar
  174. Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164PubMedCrossRefGoogle Scholar
  175. Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics 38:706–710PubMedCrossRefGoogle Scholar
  176. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hiria M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the origin of clubroot resistance. Genetics 173:309–319PubMedCrossRefGoogle Scholar
  177. Tadage M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553CrossRefGoogle Scholar
  178. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457PubMedCrossRefGoogle Scholar
  179. Tang J, Zhang J, Ma C, Tang W, Gao C, Li F, Wang X, Liu Y, Fu T (2009) CAPS and SCAR markers linked to maintenance of selfincompatibility developed from SP11 in Brassica napus L. Mol Breeding 24:245–254CrossRefGoogle Scholar
  180. Tanhuanpää P, Vilkki J, Vilkki HJ (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome 38:414–416PubMedCrossRefGoogle Scholar
  181. Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet 89:885–894CrossRefGoogle Scholar
  182. Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286CrossRefGoogle Scholar
  183. Trautwein EA, Duchateau G, Lin Y, Melcnikov SM, Molhuizen H, Ntanios FY (2003) Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur J Lipid Sci Technol 105:171–185CrossRefGoogle Scholar
  184. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotech J 7:334–346CrossRefGoogle Scholar
  185. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  186. Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapessed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609Google Scholar
  187. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979PubMedCrossRefGoogle Scholar
  188. United States Department of Agriculture (2009) Oilseeds: world market and trade. Foreign Agricultural Service Circular Series 11–09, November.Google Scholar
  189. Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  190. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by overexpression of a yeast glycerol-3-phophate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441PubMedCrossRefGoogle Scholar
  191. Vignal A, Milan D, Sancristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305PubMedCrossRefGoogle Scholar
  192. Walker KC, Booth EJ (2001) Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol 103:441–446CrossRefGoogle Scholar
  193. Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126:588–595CrossRefGoogle Scholar
  194. Warwick SI, Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferar, tribe Brassiceae). Can J Botany 71:906–918Google Scholar
  195. Weier D, Mittasch J, Strack D, Milkowski C (2007) The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385PubMedCrossRefGoogle Scholar
  196. Westermeier P, Wenzel G, Moler V (2009) Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet 119:1301–1311PubMedCrossRefGoogle Scholar
  197. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y-J, Makhijani V, Roth GT, Gomes X, Tartaro K, et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876PubMedCrossRefGoogle Scholar
  198. Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140CrossRefGoogle Scholar
  199. Wu G, Wu Y, Xiao L, Li X, Changming L (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499PubMedCrossRefGoogle Scholar
  200. Yu S, Derr J, Etherton TD, Kris-Etherton PM (1995) Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr 61:1129–1139PubMedGoogle Scholar
  201. Zarhloul MK, Stoll C, Lϋhs W, Syring-Ehemann A, Hausmann L, Töpfer R, Friedt W (2006) Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimized promoter-gene constructs. Mol Breed 18:241–251CrossRefGoogle Scholar
  202. Zhao J, Becker H, Zhang D, Zhang Y, Ecke W (2005) Oil content in an European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59CrossRefGoogle Scholar
  203. Zhao J, Becker H, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 133:33–38CrossRefGoogle Scholar
  204. Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23CrossRefGoogle Scholar
  205. Zhao H, Shi L, Duan X, Xu F, Wang Y, Jinling Meng J (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus. Mol Breed 22:495–506CrossRefGoogle Scholar
  206. Zum Felde T, Becker HC, Möllers C (2006) Genotype x environment interactions, heritability and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Genomics and Bioinformatics Unit (UGB)Agri aquaculture Nutritional Genomic Center (CGNA), INIA-CarillancaTemucoChile

Personalised recommendations