Phylogeny, Genome, and Karyotype Evolution of Crucifers (Brassicaceae)

  • Martin A. LysakEmail author
  • Marcus A. Koch
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 9)


Brassicaceae (crucifers or the mustard family) is a large plant family comprising over 330 genera and about 3,700 species, including several important crop plants (e.g. Brassica species), ornamentals as well as model organisms in the plant sciences (e.g. Arabidopsis thaliana). In recent years, the wealth of Arabidopsis and Brassica genomic resources along with newly established tools and techniques fostered the unprecedented progress in phylogenetics and genomics of crucifers. Multigene phylogenetic analyses paved the way for a new infrafamiliar classification based on phylogenetically circumscribed genera and tribes. A new generation of comparative genetic, cytogenetic, and genomic studies as well as whole-genome sequencing projects unveil general principles of karyotype and genome evolution in Brassicaceae.


Brassicaceae Cruciferae Phylogeny Tribal classification Genome and karyotype evolution Chromosomes Genome size Whole-genome duplication Polyploidy Genome collinearity 



Ancestral crucifer karyotype


Ancestral chromosome of the ACK


Ancestral genome size


Angiosperm phylogeny group


Comparative chromosome painting


Chloroplast DNA


4, 6-diamidino-2-phenylindole


Fluorescence in situ hybridization


Genomic DNA


Genomic in situ hybridization


Genome size


Internal transcribed spacer within rDNA


Nucleolar organizing region


Mitochondrial DNA


Million years ago


Proto-Calepineae karyotype


Ribosomal DNA


Restriction fragment length polymorphism


Rare genomic change


Whole-genome duplication



We are thankful to T. Mandáková for sharing unpublished cytogenetic data. This work was supported by research grants from the Grant Agency of the Czech Academy of Science (KJB601630606 and IAA601630902) and the Czech Ministry of Education (MSM0021622415) to MAL and various grants over the last 10 years from the German Research Foundation (DFG) and the Austrian Science Fund (FWF) to MAK.


  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373Google Scholar
  3. Al-Shehbaz IA (1985) The genera of Brassiceae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 66:279–351Google Scholar
  4. Al-Shehbaz IA (1988a) The genera of Arabideae (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:85–166Google Scholar
  5. Al-Shehbaz IA (1988b) The genera of Anchonieae (Hesperideae) (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:193–212Google Scholar
  6. Al-Shehbaz IA (1988c) The genera of Sisymbrieae (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:213–237Google Scholar
  7. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  8. Al-Shehbaz IA, Mummenhoff K (2005) Transfer of the South African genera Brachycarpaea, Cycloptychis, Schlechteria, Silicularia, and Thlaspeocarpa to Heliophila (Brassicaceae). Novon 15:385–389Google Scholar
  9. Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Donstostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv Pap Bot 12(2):429–433CrossRefGoogle Scholar
  10. Ali HBM, Lysak MA, Schubert I (2004) Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 47:954–960PubMedCrossRefGoogle Scholar
  11. Allan HH (1961) Cruciferae. Fl N Z 1:174–189Google Scholar
  12. Angiosperm Phylogeny Group II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  13. Appel O, Al-Shehbaz IA (2002) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, pp 75–174. Springer, BerlinGoogle Scholar
  14. Bailey CD, Koch MA, Mayer M, et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160PubMedCrossRefGoogle Scholar
  15. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619CrossRefGoogle Scholar
  16. Beilstein MA, Al-Shehbaz IA, Mathews S, et al (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327CrossRefGoogle Scholar
  17. Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144PubMedCrossRefGoogle Scholar
  18. Boivin K, Acarkan A, Mbulu RS, et al (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744PubMedCrossRefGoogle Scholar
  19. Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438PubMedCrossRefGoogle Scholar
  20. Cheng BF, Heneen WK, Chen BY (1995) Mitotic karyotypes of Brassica campestris and Brassica alboglabra and identification of the B. alboglabra chromosome in an addition line. Genome 38:313–319PubMedCrossRefGoogle Scholar
  21. Chèvre AM, Adamczyk K, Eber F, et al (2007) Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure. Theor Appl Genet 114:209–221PubMedCrossRefGoogle Scholar
  22. Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11:217–226PubMedCrossRefGoogle Scholar
  23. Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummmenhoff K (2009) Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71CrossRefGoogle Scholar
  24. De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597PubMedCrossRefGoogle Scholar
  25. De Candolle AP (1821) Mémoire sur la famille des Crucifères. Mém Mus Hist Nat 7(1):169–252Google Scholar
  26. De Craene LPR, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494CrossRefGoogle Scholar
  27. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCrossRefGoogle Scholar
  28. Dobeš C, Mitchell-Olds T, Koch MA (2004a) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A.× divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13:349–370PubMedCrossRefGoogle Scholar
  29. Dobeš C, Mitchell-Olds T, Koch MA (2004b) Intraspecific diversification in North American Arabis drummondii, A. ×divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. Am J Bot 91:2087–2101CrossRefGoogle Scholar
  30. Dobigny G, Yang F (2008) Comparative cytogenetics in the genomics era: cytogenomics comes of age. Chromosome Res 16:1–4PubMedCrossRefGoogle Scholar
  31. Easterly NW (1963) Chromosome numbers of some northwestern Ohio Cruciferae. Castanea 28:39–42Google Scholar
  32. Eschmann-Grupe G, Hurka H, Neuffer B (2004) Extent and structure of genetic variation in two Diplotaxis species (Brassicaceae) with contrasting breeding systems. Plant Syst Evol 244:31–43CrossRefGoogle Scholar
  33. Faraut T (2008) Addressing chromosome evolution in the whole-genome sequence era. Chromosome Res 16:5–16PubMedCrossRefGoogle Scholar
  34. Fransz P, de Jong JH, Lysak M, et al (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589PubMedCrossRefGoogle Scholar
  35. Franzke A, German D, Al-Shehbaz IA, et al (2009) Arabidopsis family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58:425–437Google Scholar
  36. Gaeta RT, Pires JC, Iniguez-Luy F, et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417PubMedCrossRefGoogle Scholar
  37. Galloway GL, Malmberg RL, Price RA (1998) Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae. Mol Biol Evol 15:1312–1320PubMedGoogle Scholar
  38. Gandolfo MA, Nixon KC, Crepet WL (1998) A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am J Bot 85:964–974CrossRefGoogle Scholar
  39. German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae. Harv Pap Bot 13:165–170CrossRefGoogle Scholar
  40. Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669CrossRefGoogle Scholar
  41. Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842CrossRefGoogle Scholar
  42. Harriman NA (1965) The genus Dentaria L. (Cruciferae) in eastern North America. PhD. Thesis Vanderbilt UniversityGoogle Scholar
  43. Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335Google Scholar
  44. Hedge IC (1976) A systematic and geographical survey of the Old World Cruciferae. In: Vaughn JG, Macleod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae, pp 1–45. Academic Press, LondonGoogle Scholar
  45. Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of review polyploid plants. Curr Biol 18:435–444CrossRefGoogle Scholar
  46. Henry Y, Bedhomme M, Blanc G (2006) History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci 11:267–273PubMedCrossRefGoogle Scholar
  47. Hewson HJ (1982) Brassicaceae. In: Briggs BG (ed) Flora of Australia, vol 8, pp 231–357. CSIRO Publishing, CanberraGoogle Scholar
  48. Howell EC, Kearsey MJ, Jones GH, et al (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential FISH and GISH. Genetics 180:1849–1857Google Scholar
  49. Jackson SA, Cheng Z, Wang ML, et al (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838PubMedGoogle Scholar
  50. Jaillon O, Aury JM, Noel B, et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  51. Janchen E (1942) Das System der Cruciferen. Öster Bot Zeitschr 91:1–28Google Scholar
  52. Jordon-Thaden I, Koch MA (2008) Diversity patterns in the genus Draba: a first global perspective. Plant Ecol Divers 1(2):255–263CrossRefGoogle Scholar
  53. Jørgensen MH, Carlsen T, Skrede I, Elven R (2008) Microsatellites resolve the taxonomy of the polyploid Cardamine digitata aggregate (Brassicaceae). Taxon 57:882–892Google Scholar
  54. Judd WS, Sanders RW, Donoghue MJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harv Pap Bot 5:1–51Google Scholar
  55. Kantama L, Sharbel TF, Schranz ME, et al (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031PubMedCrossRefGoogle Scholar
  56. Koch M (2003) Molecular phylogenetics, evolution and population biology in Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1a (phanerogams), pp 1–35. Science Publishers, Enfield, NHGoogle Scholar
  57. Koch MA, Al Shehbaz IA (2009) Molecluar systematics and evolution of “wild” crucifers (Brassicaceae or Cruciferae). In: Gupta S (ed) Biology and breeding of Crucifers. Taylor and Francis Group, LondonGoogle Scholar
  58. Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Missouri Bot Gard 90:151–171CrossRefGoogle Scholar
  59. Koch M, Bernhardt KG (2004) Comparative biogeography of the cytotypes of annual Microthlaspi perfoliatum (Brassicaceae) in Europe using isozymes and cpDNA data: refugia, diversity centers, and postglacial colonization. Am J Bot 91:114–124CrossRefGoogle Scholar
  60. Koch M, Bishop J, Mitchell-Olds T (1999a) Molecular systematics of Arabidopsis and Arabis. Plant Biol 1:529–537CrossRefGoogle Scholar
  61. Koch MA, Dobeš C, Kiefer C, et al (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73PubMedCrossRefGoogle Scholar
  62. Koch M, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498PubMedGoogle Scholar
  63. Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544PubMedCrossRefGoogle Scholar
  64. Koch M, Hurka H (1999) Isozyme analysis in the polyploid complex Microthlaspi perfoliatum (L.) F. K. Meyer: morphology, biogeography and evolutionary history. Flora 194:33–48Google Scholar
  65. Koch M, Huthmann M, Hurka H (1998a) Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. Can J Bot 76:382–396CrossRefGoogle Scholar
  66. Koch M, Huthmann M, Hurka H (1998b) Isozymes, speciation and evolution in the polyploid Cochlearia L. (Brassicaceae). Bot Acta 111:411–425Google Scholar
  67. Koch M, Kiefer M (2005) Genome evolution among cruciferous plants – a lecture from the comparison of the genetic maps of three diploid species: Capsella rubella, Arabidopsis lyrata ssp. petraea and Arabidopsis thaliana. Am J Bot 92(4):761–767CrossRefGoogle Scholar
  68. Koch M, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259(2–4):121–142CrossRefGoogle Scholar
  69. Koch M, Kiefer C, Vogel J, et al (2006) Three times out of Asia Minor – the phylogeography of Arabis alpina L. (Brassiaceae). Mol Ecol 15:825–839PubMedCrossRefGoogle Scholar
  70. Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. PNAS 104(15):6272–6277PubMedCrossRefGoogle Scholar
  71. Koch M, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–258CrossRefGoogle Scholar
  72. Koch M, Mummenhoff K, Hurka H (1999b) Molecular phylogenetics of Cochlearia (Brassicaceae) and allied genera based on nuclear ribosomal ITS DNA sequence analysis contradict traditional concepts of their evolutionary relationship. Plant Syst Evol 216:207–230CrossRefGoogle Scholar
  73. Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194PubMedCrossRefGoogle Scholar
  74. Kuittinen H, de Haan AA, Vogl C, et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584PubMedCrossRefGoogle Scholar
  75. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  76. Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910PubMedGoogle Scholar
  77. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl. A):85–94CrossRefGoogle Scholar
  78. Lihova J, Marhold K (2003) Taxonomy and distribution of the Cardamine pratensis group (Brassicaceae) in Slovenia. Phyton 43:241–261Google Scholar
  79. Lysak M, Berr A, Pecinka A, et al (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229PubMedCrossRefGoogle Scholar
  80. Lysak MA, Cheung K, Kitschke M, et al (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410PubMedCrossRefGoogle Scholar
  81. Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697PubMedCrossRefGoogle Scholar
  82. Lysak MA, Koch MA, Leitch IJ, et al (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98PubMedCrossRefGoogle Scholar
  83. Lysak ML, Koch MA, Pecinka A, et al (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  84. Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259:175–198CrossRefGoogle Scholar
  85. Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204PubMedCrossRefGoogle Scholar
  86. Maere S, De Bodt S, Raes J, et al (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459PubMedCrossRefGoogle Scholar
  87. Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Miss Bot Gard 86:297–372CrossRefGoogle Scholar
  88. Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780PubMedGoogle Scholar
  89. Mallet J (2007) Hybrid speciation. Nature 446:279–283PubMedCrossRefGoogle Scholar
  90. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109:310–314PubMedCrossRefGoogle Scholar
  91. Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290PubMedCrossRefGoogle Scholar
  92. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570PubMedCrossRefGoogle Scholar
  93. Manton I (1932) Introduction to the general cytology of the Cruciferae. Ann Bot 46:509–556Google Scholar
  94. Manton I (1937) The problem of Biscutella laevigata L. II. The evidence from meisois. Ann Bot 1:439–462Google Scholar
  95. Marais W (1970) Cruciferae. In: Codd LE, De Winter B, Killick DJB et al (eds) Flora of southern Africa, Vol. 13, pp 1–118. National Botanic Gardens, KirstenboschGoogle Scholar
  96. Marhold K (1999) Taxonomic evaluation of the tetraploid populations of Cardamine amara (Brassicaceae) from the Eastern Alps and adjacent areas. Bot Helv 109:67–84Google Scholar
  97. Marhold K, Lihová J (2006) Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Syst Evol 259:143–174CrossRefGoogle Scholar
  98. Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCrossRefGoogle Scholar
  99. Mitchell-Olds T, Al-Shehbaz IA, Koch MA, et al (2005) Crucifer evolution in the post-genomic era. In: Henry RJ (ed) Plant diversity and evolution, pp 119–137. CAB International, Oxfordshire, UKGoogle Scholar
  100. Montgomery FH (1955) Preliminary studies in the genus Dentaria in eastern North America. Rhodora 57:161–173Google Scholar
  101. Mummenhoff K, Hurka H (1994) Subunit polypeptide composition of Rubisco and the origin of allopolyploid Arabidopsis suecica (Brassicaceae). Biochem Syst Ecol 22:807–812CrossRefGoogle Scholar
  102. Mummenhoff K, Linder P, Friesen N, et al (2004) Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261CrossRefGoogle Scholar
  103. Oyama RK, Clauss MJ, Formanova N, et al (2008) The shrunken genome of Arabidopsis thaliana. Plant Syst Evol 273:257–271CrossRefGoogle Scholar
  104. Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767PubMedCrossRefGoogle Scholar
  105. Parkin IAP, Gulden SM, Sharpe AG, et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781PubMedCrossRefGoogle Scholar
  106. Pecinka A, Schubert V, Meister A, et al (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269PubMedCrossRefGoogle Scholar
  107. Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol III, 2, pp 145–206. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  108. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733PubMedCrossRefGoogle Scholar
  109. Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914PubMedCrossRefGoogle Scholar
  110. Rokas A, Holland WH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459PubMedCrossRefGoogle Scholar
  111. Rollins RC (1993) The Cruciferae of Continental North America. Stanford University Press, StanfordGoogle Scholar
  112. Roosens NHCJ, Willems G, Gode C, et al (2008) The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant Soil 306:105–116CrossRefGoogle Scholar
  113. Santos JL, Alfaro D, Sanchez-Moran E, et al (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540PubMedGoogle Scholar
  114. Schmickl R, Jorgensen MH, Brysting A (2008) Phylogeographic implications for North American arctic Arabidopsis lyrata. Plant Ecol Divers 1(2):245–254CrossRefGoogle Scholar
  115. Schranz E, Dobes C, Koch MA, et al (2005) Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92(11):1797–1810CrossRefGoogle Scholar
  116. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  117. Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165PubMedCrossRefGoogle Scholar
  118. Schranz ME, Windsor AJ, Song B-H, Lawton-Rauh A, Mitchell-Olds T (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144:286–298PubMedCrossRefGoogle Scholar
  119. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:1–7CrossRefGoogle Scholar
  120. Schulz OE (1936) Cruciferae. In: Engler A, Harms H (ed) Die natürlichen Pflanzenfamilien, vol. 17B, pp 227–658. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  121. Shimizu KK, Fujii S, Marhold K, et al (2005) Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and B. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot 56:163–172Google Scholar
  122. Simillion C, Vandepoele K, Van Montagu MCE, et al (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:7719–7723CrossRefGoogle Scholar
  123. Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95PubMedCrossRefGoogle Scholar
  124. Snowdon RJ, Köhler W, Friedt W, et al (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324CrossRefGoogle Scholar
  125. Soltis DE, Soltis PS, Schemske DW, et al (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30Google Scholar
  126. Stevens PF (2001) onwards. Angiosperm Phylogeny Website.[and more or less continuously updated since]. Accessed Version 9, June 2008
  127. Tang HB, Bowers JE, Wang XY, et al (2008) Perspective – Synteny and collinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  128. Tremetsberger K, König C, Samuel R, et al (2002) Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton’s hypothesis. Plant Syst Evol 233:163–181CrossRefGoogle Scholar
  129. Tsunoda S, Hinata K, Gómez-Campo C (1980) Brassica crops and wild allies, pp 1–354. Japan Scientific Societies Press, TokyoGoogle Scholar
  130. Urbanska KM, Hurka H, Landolt E, et al (1997) Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, Central Switzerland: biosystematic and molecular evidence. Plant Syst Evol 204:233–256CrossRefGoogle Scholar
  131. Vaughan JG, Macleod AJ, Jones BMG (1976) The biology and chemistry of the cruciferae, pp 1–355. Academic Press, LondonGoogle Scholar
  132. Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248CrossRefGoogle Scholar
  133. Warwick SI, Al-Shehbaz IA, Sauder CA (2006a) Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84:269–281CrossRefGoogle Scholar
  134. Warwick SI, Francis A, Al-Shehbaz IA (2006b) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258CrossRefGoogle Scholar
  135. Warwick SI, Mummenhoff K, Sauder C, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285(3–4):209–232CrossRefGoogle Scholar
  136. Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483CrossRefGoogle Scholar
  137. Warwick SI, Sauder CA, Al-Shehbaz IA, et al (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Ann Miss Bot Gard 94:56–78CrossRefGoogle Scholar
  138. Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Can J Bot 86:315–336CrossRefGoogle Scholar
  139. Widmer A, Baltisberger M (1999) Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina (Brassicaceae). Am J Bot 86:1282–1289PubMedCrossRefGoogle Scholar
  140. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B 268:2211–2220CrossRefGoogle Scholar
  141. Yang YW, Lai KN, Tai PY, et al (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and the other angiosperm lineages. J Mol Evol 48:597–604PubMedCrossRefGoogle Scholar
  142. Yogeeswaran K, Frary A, York TL, et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515PubMedCrossRefGoogle Scholar
  143. Ziolkowski PA, Kaczmarek M, Babula D, et al (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74PubMedCrossRefGoogle Scholar
  144. Zunk K, Mummenhoff K, Hurka H (1999) Phylogenetic relationships in tribe Lepidieae (Brassicaceae) based on chloroplast DNA restriction site variation. Can J Bot 77:1504–1512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Functional Genomics and ProteomicsInstitute of Experimental Biology, Masaryk UniversityBrnoCzech Republic
  2. 2.Heidelberg Institute of Plant Sciences, Biodiversity and Plant Systematics, University of HeidelbergHeidelbergGermany

Personalised recommendations