Skip to main content

Phylogeny, Genome, and Karyotype Evolution of Crucifers (Brassicaceae)

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Brassicaceae (crucifers or the mustard family) is a large plant family comprising over 330 genera and about 3,700 species, including several important crop plants (e.g. Brassica species), ornamentals as well as model organisms in the plant sciences (e.g. Arabidopsis thaliana). In recent years, the wealth of Arabidopsis and Brassica genomic resources along with newly established tools and techniques fostered the unprecedented progress in phylogenetics and genomics of crucifers. Multigene phylogenetic analyses paved the way for a new infrafamiliar classification based on phylogenetically circumscribed genera and tribes. A new generation of comparative genetic, cytogenetic, and genomic studies as well as whole-genome sequencing projects unveil general principles of karyotype and genome evolution in Brassicaceae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACK:

Ancestral crucifer karyotype

AK:

Ancestral chromosome of the ACK

ancGS:

Ancestral genome size

APG:

Angiosperm phylogeny group

CCP:

Comparative chromosome painting

cpDNA:

Chloroplast DNA

DAPI:

4, 6-diamidino-2-phenylindole

FISH:

Fluorescence in situ hybridization

gDNA:

Genomic DNA

GISH:

Genomic in situ hybridization

GS:

Genome size

ITS:

Internal transcribed spacer within rDNA

NOR:

Nucleolar organizing region

mtDNA:

Mitochondrial DNA

mya:

Million years ago

PCK:

Proto-Calepineae karyotype

rDNA:

Ribosomal DNA

RFLP:

Restriction fragment length polymorphism

RGC:

Rare genomic change

WGD:

Whole-genome duplication

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Google Scholar 

  • Al-Shehbaz IA (1985) The genera of Brassiceae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 66:279–351

    Google Scholar 

  • Al-Shehbaz IA (1988a) The genera of Arabideae (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:85–166

    Google Scholar 

  • Al-Shehbaz IA (1988b) The genera of Anchonieae (Hesperideae) (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:193–212

    Google Scholar 

  • Al-Shehbaz IA (1988c) The genera of Sisymbrieae (Cruciferae; Brassicaceae), the southeastern United States. J Arnold Arbor 69:213–237

    Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Al-Shehbaz IA, Mummenhoff K (2005) Transfer of the South African genera Brachycarpaea, Cycloptychis, Schlechteria, Silicularia, and Thlaspeocarpa to Heliophila (Brassicaceae). Novon 15:385–389

    Google Scholar 

  • Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Donstostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv Pap Bot 12(2):429–433

    Article  Google Scholar 

  • Ali HBM, Lysak MA, Schubert I (2004) Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 47:954–960

    Article  CAS  PubMed  Google Scholar 

  • Allan HH (1961) Cruciferae. Fl N Z 1:174–189

    Google Scholar 

  • Angiosperm Phylogeny Group II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Appel O, Al-Shehbaz IA (2002) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, pp 75–174. Springer, Berlin

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  CAS  PubMed  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    Article  CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, et al (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    Article  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  Google Scholar 

  • Boivin K, Acarkan A, Mbulu RS, et al (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Cheng BF, Heneen WK, Chen BY (1995) Mitotic karyotypes of Brassica campestris and Brassica alboglabra and identification of the B. alboglabra chromosome in an addition line. Genome 38:313–319

    Article  CAS  PubMed  Google Scholar 

  • Chèvre AM, Adamczyk K, Eber F, et al (2007) Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure. Theor Appl Genet 114:209–221

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11:217–226

    Article  CAS  PubMed  Google Scholar 

  • Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummmenhoff K (2009) Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    Article  CAS  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  • De Candolle AP (1821) Mémoire sur la famille des Crucifères. Mém Mus Hist Nat 7(1):169–252

    Google Scholar 

  • De Craene LPR, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494

    Article  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004a) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A.× divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13:349–370

    Article  PubMed  CAS  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004b) Intraspecific diversification in North American Arabis drummondii, A. ×divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. Am J Bot 91:2087–2101

    Article  Google Scholar 

  • Dobigny G, Yang F (2008) Comparative cytogenetics in the genomics era: cytogenomics comes of age. Chromosome Res 16:1–4

    Article  CAS  PubMed  Google Scholar 

  • Easterly NW (1963) Chromosome numbers of some northwestern Ohio Cruciferae. Castanea 28:39–42

    Google Scholar 

  • Eschmann-Grupe G, Hurka H, Neuffer B (2004) Extent and structure of genetic variation in two Diplotaxis species (Brassicaceae) with contrasting breeding systems. Plant Syst Evol 244:31–43

    Article  Google Scholar 

  • Faraut T (2008) Addressing chromosome evolution in the whole-genome sequence era. Chromosome Res 16:5–16

    Article  CAS  PubMed  Google Scholar 

  • Fransz P, de Jong JH, Lysak M, et al (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589

    Article  CAS  PubMed  Google Scholar 

  • Franzke A, German D, Al-Shehbaz IA, et al (2009) Arabidopsis family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58:425–437

    Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  Google Scholar 

  • Galloway GL, Malmberg RL, Price RA (1998) Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae. Mol Biol Evol 15:1312–1320

    CAS  PubMed  Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL (1998) A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am J Bot 85:964–974

    Article  Google Scholar 

  • German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae. Harv Pap Bot 13:165–170

    Article  Google Scholar 

  • Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669

    Article  Google Scholar 

  • Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842

    Article  Google Scholar 

  • Harriman NA (1965) The genus Dentaria L. (Cruciferae) in eastern North America. PhD. Thesis Vanderbilt University

    Google Scholar 

  • Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335

    Google Scholar 

  • Hedge IC (1976) A systematic and geographical survey of the Old World Cruciferae. In: Vaughn JG, Macleod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae, pp 1–45. Academic Press, London

    Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of review polyploid plants. Curr Biol 18:435–444

    Article  CAS  Google Scholar 

  • Henry Y, Bedhomme M, Blanc G (2006) History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci 11:267–273

    Article  CAS  PubMed  Google Scholar 

  • Hewson HJ (1982) Brassicaceae. In: Briggs BG (ed) Flora of Australia, vol 8, pp 231–357. CSIRO Publishing, Canberra

    Google Scholar 

  • Howell EC, Kearsey MJ, Jones GH, et al (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential FISH and GISH. Genetics 180:1849–1857

    Google Scholar 

  • Jackson SA, Cheng Z, Wang ML, et al (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838

    CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Öster Bot Zeitschr 91:1–28

    Google Scholar 

  • Jordon-Thaden I, Koch MA (2008) Diversity patterns in the genus Draba: a first global perspective. Plant Ecol Divers 1(2):255–263

    Article  Google Scholar 

  • Jørgensen MH, Carlsen T, Skrede I, Elven R (2008) Microsatellites resolve the taxonomy of the polyploid Cardamine digitata aggregate (Brassicaceae). Taxon 57:882–892

    Google Scholar 

  • Judd WS, Sanders RW, Donoghue MJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harv Pap Bot 5:1–51

    Google Scholar 

  • Kantama L, Sharbel TF, Schranz ME, et al (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031

    Article  CAS  PubMed  Google Scholar 

  • Koch M (2003) Molecular phylogenetics, evolution and population biology in Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1a (phanerogams), pp 1–35. Science Publishers, Enfield, NH

    Google Scholar 

  • Koch MA, Al Shehbaz IA (2009) Molecluar systematics and evolution of “wild” crucifers (Brassicaceae or Cruciferae). In: Gupta S (ed) Biology and breeding of Crucifers. Taylor and Francis Group, London

    Google Scholar 

  • Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Missouri Bot Gard 90:151–171

    Article  Google Scholar 

  • Koch M, Bernhardt KG (2004) Comparative biogeography of the cytotypes of annual Microthlaspi perfoliatum (Brassicaceae) in Europe using isozymes and cpDNA data: refugia, diversity centers, and postglacial colonization. Am J Bot 91:114–124

    Article  Google Scholar 

  • Koch M, Bishop J, Mitchell-Olds T (1999a) Molecular systematics of Arabidopsis and Arabis. Plant Biol 1:529–537

    Article  Google Scholar 

  • Koch MA, Dobeš C, Kiefer C, et al (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544

    Article  PubMed  Google Scholar 

  • Koch M, Hurka H (1999) Isozyme analysis in the polyploid complex Microthlaspi perfoliatum (L.) F. K. Meyer: morphology, biogeography and evolutionary history. Flora 194:33–48

    Google Scholar 

  • Koch M, Huthmann M, Hurka H (1998a) Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. Can J Bot 76:382–396

    Article  Google Scholar 

  • Koch M, Huthmann M, Hurka H (1998b) Isozymes, speciation and evolution in the polyploid Cochlearia L. (Brassicaceae). Bot Acta 111:411–425

    CAS  Google Scholar 

  • Koch M, Kiefer M (2005) Genome evolution among cruciferous plants – a lecture from the comparison of the genetic maps of three diploid species: Capsella rubella, Arabidopsis lyrata ssp. petraea and Arabidopsis thaliana. Am J Bot 92(4):761–767

    Article  Google Scholar 

  • Koch M, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259(2–4):121–142

    Article  CAS  Google Scholar 

  • Koch M, Kiefer C, Vogel J, et al (2006) Three times out of Asia Minor – the phylogeography of Arabis alpina L. (Brassiaceae). Mol Ecol 15:825–839

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. PNAS 104(15):6272–6277

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–258

    Article  Google Scholar 

  • Koch M, Mummenhoff K, Hurka H (1999b) Molecular phylogenetics of Cochlearia (Brassicaceae) and allied genera based on nuclear ribosomal ITS DNA sequence analysis contradict traditional concepts of their evolutionary relationship. Plant Syst Evol 216:207–230

    Article  Google Scholar 

  • Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl. A):85–94

    Article  CAS  Google Scholar 

  • Lihova J, Marhold K (2003) Taxonomy and distribution of the Cardamine pratensis group (Brassicaceae) in Slovenia. Phyton 43:241–261

    Google Scholar 

  • Lysak M, Berr A, Pecinka A, et al (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, et al (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Leitch IJ, et al (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  CAS  PubMed  Google Scholar 

  • Lysak ML, Koch MA, Pecinka A, et al (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259:175–198

    Article  CAS  Google Scholar 

  • Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204

    Article  CAS  PubMed  Google Scholar 

  • Maere S, De Bodt S, Raes J, et al (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  CAS  PubMed  Google Scholar 

  • Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Miss Bot Gard 86:297–372

    Article  Google Scholar 

  • Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780

    CAS  PubMed  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  CAS  PubMed  Google Scholar 

  • Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109:310–314

    Article  CAS  PubMed  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  CAS  Google Scholar 

  • Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed  CAS  Google Scholar 

  • Manton I (1932) Introduction to the general cytology of the Cruciferae. Ann Bot 46:509–556

    Google Scholar 

  • Manton I (1937) The problem of Biscutella laevigata L. II. The evidence from meisois. Ann Bot 1:439–462

    Google Scholar 

  • Marais W (1970) Cruciferae. In: Codd LE, De Winter B, Killick DJB et al (eds) Flora of southern Africa, Vol. 13, pp 1–118. National Botanic Gardens, Kirstenbosch

    Google Scholar 

  • Marhold K (1999) Taxonomic evaluation of the tetraploid populations of Cardamine amara (Brassicaceae) from the Eastern Alps and adjacent areas. Bot Helv 109:67–84

    Google Scholar 

  • Marhold K, Lihová J (2006) Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Syst Evol 259:143–174

    Article  Google Scholar 

  • Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Al-Shehbaz IA, Koch MA, et al (2005) Crucifer evolution in the post-genomic era. In: Henry RJ (ed) Plant diversity and evolution, pp 119–137. CAB International, Oxfordshire, UK

    Google Scholar 

  • Montgomery FH (1955) Preliminary studies in the genus Dentaria in eastern North America. Rhodora 57:161–173

    Google Scholar 

  • Mummenhoff K, Hurka H (1994) Subunit polypeptide composition of Rubisco and the origin of allopolyploid Arabidopsis suecica (Brassicaceae). Biochem Syst Ecol 22:807–812

    Article  CAS  Google Scholar 

  • Mummenhoff K, Linder P, Friesen N, et al (2004) Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261

    Article  CAS  Google Scholar 

  • Oyama RK, Clauss MJ, Formanova N, et al (2008) The shrunken genome of Arabidopsis thaliana. Plant Syst Evol 273:257–271

    Article  CAS  Google Scholar 

  • Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767

    Article  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Pecinka A, Schubert V, Meister A, et al (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    Article  CAS  PubMed  Google Scholar 

  • Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol III, 2, pp 145–206. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Holland WH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Rollins RC (1993) The Cruciferae of Continental North America. Stanford University Press, Stanford

    Google Scholar 

  • Roosens NHCJ, Willems G, Gode C, et al (2008) The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant Soil 306:105–116

    Article  CAS  Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, et al (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    CAS  PubMed  Google Scholar 

  • Schmickl R, Jorgensen MH, Brysting A (2008) Phylogeographic implications for North American arctic Arabidopsis lyrata. Plant Ecol Divers 1(2):245–254

    Article  Google Scholar 

  • Schranz E, Dobes C, Koch MA, et al (2005) Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92(11):1797–1810

    Article  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Windsor AJ, Song B-H, Lawton-Rauh A, Mitchell-Olds T (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144:286–298

    Article  CAS  PubMed  Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:1–7

    Article  CAS  Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Harms H (ed) Die natürlichen Pflanzenfamilien, vol. 17B, pp 227–658. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Shimizu KK, Fujii S, Marhold K, et al (2005) Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and B. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot 56:163–172

    Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MCE, et al (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:7719–7723

    Article  CAS  Google Scholar 

  • Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Köhler W, Friedt W, et al (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, et al (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Stevens PF (2001) onwards. Angiosperm Phylogeny Website.[and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. Accessed Version 9, June 2008

  • Tang HB, Bowers JE, Wang XY, et al (2008) Perspective – Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  • Tremetsberger K, König C, Samuel R, et al (2002) Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton’s hypothesis. Plant Syst Evol 233:163–181

    Article  Google Scholar 

  • Tsunoda S, Hinata K, Gómez-Campo C (1980) Brassica crops and wild allies, pp 1–354. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Urbanska KM, Hurka H, Landolt E, et al (1997) Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, Central Switzerland: biosystematic and molecular evidence. Plant Syst Evol 204:233–256

    Article  Google Scholar 

  • Vaughan JG, Macleod AJ, Jones BMG (1976) The biology and chemistry of the cruciferae, pp 1–355. Academic Press, London

    Google Scholar 

  • Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248

    Article  Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Sauder CA (2006a) Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84:269–281

    Article  CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006b) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Article  Google Scholar 

  • Warwick SI, Mummenhoff K, Sauder C, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285(3–4):209–232

    Article  CAS  Google Scholar 

  • Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483

    Article  Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA, et al (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Ann Miss Bot Gard 94:56–78

    Article  Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Can J Bot 86:315–336

    Article  CAS  Google Scholar 

  • Widmer A, Baltisberger M (1999) Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina (Brassicaceae). Am J Bot 86:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B 268:2211–2220

    Article  Google Scholar 

  • Yang YW, Lai KN, Tai PY, et al (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and the other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswaran K, Frary A, York TL, et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Ziolkowski PA, Kaczmarek M, Babula D, et al (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74

    Article  CAS  PubMed  Google Scholar 

  • Zunk K, Mummenhoff K, Hurka H (1999) Phylogenetic relationships in tribe Lepidieae (Brassicaceae) based on chloroplast DNA restriction site variation. Can J Bot 77:1504–1512

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to T. Mandáková for sharing unpublished cytogenetic data. This work was supported by research grants from the Grant Agency of the Czech Academy of Science (KJB601630606 and IAA601630902) and the Czech Ministry of Education (MSM0021622415) to MAL and various grants over the last 10 years from the German Research Foundation (DFG) and the Austrian Science Fund (FWF) to MAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Lysak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lysak, M.A., Koch, M.A. (2011). Phylogeny, Genome, and Karyotype Evolution of Crucifers (Brassicaceae). In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_1

Download citation

Publish with us

Policies and ethics