Advertisement

Virtual String Synthesis

  • Nelson Lee
  • Julius O. SmithIII
Chapter

Abstract

In this chapter, we discuss methods for real-time synthesis of stringed instruments. Interest in this topic is wide and varying, as both studio and performance uses for realistic virtual stringed instruments are becoming increasingly possible with gains in computing power.

Keywords

Delay Line Loop Filter Harmonic Peak Stringed Instrument Spectral Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Askenfelt, A., (1990). Five Lectures on the Acoustics of the Piano, Royal Swedish Academy of Music, Stockholm. Lectures by H.A. Conklin, A. Askenfelt, E. Jansson, D.E. Hall, G. Weinreic, and K. Wogram. Sound example CD included. Publication No. 64. http://www.speech.kth.se/music/5lectures/
  2. Bank, B., and Välimäki, V. (2003). Robust loss filter design for digital waveguide synthesis of string tones, IEEE Sig. Proc. Lett. 10, 18–20, January.ADSCrossRefGoogle Scholar
  3. Belevitch, V. (1968). Classical Network Theory, Holden-Day, San Francisco.MATHGoogle Scholar
  4. Bradley, K., Cheng, M.H., and Stonick, V.L. (1995). Automated analysis and computationally efficient synthesis of acoustic guitar strings and body, Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October, IEEE Press, New York, pp. 238–241.Google Scholar
  5. Chaigne, A. (1991). Viscoelastic properties of nylon guitar strings, Catgut Acoust. Soc. J. 1(Series I), 21–27.Google Scholar
  6. Chaigne, A. (1992). On the use of finite differences for musical synthesis: application to plucked stringed instruments, J. d’Acoust. 5(2), 181–211.Google Scholar
  7. Christensen, O., and Vistisen, R.B. (1980). A simple model for low-frequency guitar function, J. Acoust. Soc. Am. 68, 758–766.ADSCrossRefGoogle Scholar
  8. d’Alembert, J.l.R. (1973). Investigation of the curve formed by a vibrating string, 1747, Acoustics: Historical and Philosophical Development, R.B. Lindsay, ed., pp. 119–123, Dowden, Hutchinson, and Ross, Stroudsburg, PA.Google Scholar
  9. Dalmont, J.P., and Bruneau, A.M. (1992). Acoustic impedance measurements: plane-wave mode and first helical mode contributions, J. Acoust. Soc. Am. 91, 3026–3033.ADSCrossRefGoogle Scholar
  10. Esquef, P.A.A., Välimäki, V., and Karjalainen, M. (2002). Restoration and enhancement of solo guitar recordings based on sound source modeling, J. Audio Eng. Soc. 50(4), 227–236.Google Scholar
  11. Fletcher, N.H., and Rossing, T.D. (1998). The Physics of Musical Instruments, 2nd ed., Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  12. Hua, Y., and Sarkar, T. (1990). Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process., ASSP-38(5), 814–824.MathSciNetCrossRefGoogle Scholar
  13. Jaffe, D.A., and Smith, J.O. (1983). Extensions of the Karplus–Strong plucked string algorithm, Comp. Music J. 7(2), 56–69, 198.CrossRefGoogle Scholar
  14. Karjalainen, M., Esquef, P.A.A., and Välimäki, V. (2003). Making of a computer carillon, Proceedings of the Stockholm Music Acoustics Conference (SMAC03), 1, 339–342, Stockholm, Sweden, August 6–9.Google Scholar
  15. Karjalainen, M., Välimäki, V., and J’anosy, Z. (1993). Towards high-quality sound synthesis of the guitar and string instruments, Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 56–63, Computer Music Association, September 10–15, http://www.acoustics.hut.fi/˜vpv/publications/icmc93-guitar.htm
  16. Karjalainen, M., Välimäki, V., Penttinen, H., and Saastamoinen, H. (2000). DSP equalization of electret film pickup for the acoustic guitar, J. Audio Eng. Soc. 48(12), 1183–1193.Google Scholar
  17. Karplus, K., and Strong, A. (1983). Digital synthesis of plucked string and drum timbres, Comp. Music J. 7(2), 43–55.CrossRefGoogle Scholar
  18. King, L.V. (1934). On the acoustic radiation pressure on spheres, Proc. Roy. Soc. London, Ser. A Math. Phys. Sci. 147(861), 212–240 (November 15).ADSCrossRefGoogle Scholar
  19. Laakso, T.I., Välimäki, V., Karjalainen, M., and Laine U.K. (1996). Splitting the unit delay: tools for fractional delay filter design, IEEE Signal Process. Mag, 13, 30–60.ADSCrossRefGoogle Scholar
  20. Lambourg C., and Chaigne, A. (1993). Measurements and modeling of the admittance matrix at the bridge in guitars, Proceedings of the Stockholm Musical Acoustics Conference (SMAC-93), 448–453.Google Scholar
  21. Laroche, J. (1993). The use of the matrix pencil method for the spectrum analysis of musical signals, J. Acoust. Soc. Am. 94, 1958–1965.ADSCrossRefGoogle Scholar
  22. Laroche J. (1998). Time and pitch scale modification of audio signals, Applications of DSP to Audio & Acoustics, M. Kahrs and K. Brandenburg, eds., Kluwer, London, pp. 279–309.Google Scholar
  23. Laroche, J., and Meillier, J.L. (1994). Multichannel excitation filter modeling of percussive sounds with application to the piano, IEEE Trans. Speech Audio Process., 2(2), 329–344.CrossRefGoogle Scholar
  24. Laurenti, N., and Poli, G.D. (2000). A method for spectrum separation and envelope estimation of the residual in spectrum modeling of musical sound, Proceedings of the International Conference on Digital Audio Effects (DAFx-00), Verona, Italy, http://www.dafx.de/
  25. Lee N., Cassidy, R., and Smith, J.O. (2006). Use of energy decay relief (EDR) to estimate partial-overtone decay-times in a freely vibrating string. Invited paper at The Musical Acoustics Sessions at the Joint ASA-ASJ meeting, Honolulu.Google Scholar
  26. Lee, N., Chaigne, A., Smith, J.O., and Arcas K. (2007). Measuring and understanding the gypsy guitar, Interantional Symposium on Musical Acoustics, Barcelona, Spain, September 9–12.Google Scholar
  27. Lee, N., Duan, Z., and Smith, J.O. (2007). Excitation extraction for guitar tones, Proceedings of the International Computer Music Conference (ICMC07), Copenhagen, Denmark, August 27–31.Google Scholar
  28. Moorer, J.A. (1979). About this reverberation business, Comp. Music J. 3(2), 13–18.ADSCrossRefGoogle Scholar
  29. Newcomb, R.W. (1966). Linear Multiport Synthesis, McGraw-Hill, New York.Google Scholar
  30. Oppenheim, A.V., and Willsky, A.S. (1996). Signals and Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  31. Oppenheim, A.V., and Schafer, R.W. (1975). Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.MATHGoogle Scholar
  32. Oppenheim, A.V., Schafer, R.W., and Buck, J.R., (1989). Discrete-Time Signal Processing, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.MATHGoogle Scholar
  33. Pakarinen, J., Välimäki, V., and Karjalainen, M. (2005). Physics-based methods for modeling nonlinear vibrating strings, Acta Acust. Acust. 91(2), 312–325.Google Scholar
  34. Putnam, W., and Smith, J.O. (1997). Design of fractional delay filters using convex optimization, Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October, IEEE Press, New York, http://ccrma.stanford.edu/˜jos/resample/optfir.pdf
  35. Richardson, B.E., Hill, T.J.W., and Richardson, S.J. (2002). Input admittance and sound field measurements of ten classical guitars, Proceedings of the Institute of Acoustics 2002, 24(2), 1–10, Institute of Acoustics.Google Scholar
  36. Schafer R.W., and Rabiner, L.R. (1973). A digital signal processing approach to interpolation, Proc. IEEE 61, 692–702.ADSCrossRefGoogle Scholar
  37. Schroeder, M.R. (1961). Improved quasi-stereophony and colorless artificial reverberation, J. Audio Eng. Soc. 33,1061.Google Scholar
  38. Serra, X. (1997). Musical sound modeling with sinusoids plus noise, Musical Signal Processing, C. Roads, S. Pope, A. Picialli, and G. De Poli, eds., pp. 91–122. Swets & Zeitlinger Publishers, Netherlands.Google Scholar
  39. Smith, J.O. (1983). Techniques for digital filter design and system identification with application to the violin, PhD thesis, Electrical Engineering Department, Stanford University (CCRMA); CCRMA Technical Report STAN-M-14, http://ccrma.stanford.edu/STANM/STANM/stanm14/
  40. Smith, J.O. (1984). An allpass approach to digital phasing and flanging, Proc. of the 1984 International Computer Music Conference, Paris, Computer Music Association; CCRMA Technical Report STAN-M-21, http://ccrma.stanford.edu/STANM/STANM/stanm14/
  41. Smith, J.O. (1992). Physical modeling using digital waveguides, Comp. Music J. 16, 74–91, Winter. Special issue: Physical Modeling of Musical Instruments, Part I. http://ccrma.stanford.edu/˜jos/pmudw/ CrossRefGoogle Scholar
  42. Smith, J.O. (1993). Efficient synthesis of stringed musical instruments, Proceedings of the 1993 International Computer Music Conference, Tokyo, 64–71, Computer Music Association.Google Scholar
  43. Smith, J.O. (2007a). Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, 2nd ed., online book, http://ccrma.stanford.edu/˜jos/mdft/
  44. Smith, J.O. (2007b). Introduction to Digital Filters with Audio Applications, online book, http://ccrma.stanford.edu/˜jos/filters/
  45. Smith, J.O. (2010). Physical Audio Signal Processing, online book, August edition, http://ccrma.stanford.edu/˜jos/pasp/
  46. Smith, J.O., and Friedlander, B. (1985). Adaptive interpolated time-delay estimation, IEEE Trans. Aerospace Electron. Sys. 21, 180–199.ADSCrossRefGoogle Scholar
  47. Smith, J.O., and Gossett, P. (1984). A flexible sampling-rate conversion method, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, San Diego, vol. 2, pp. 19.4.1–19.4.2, IEEE Press, New York, March; expanded tutorial and associated free software available at the Digital Audio Resampling home page: http://ccrma.stanford.edu/˜jos/resample/ Google Scholar
  48. Smith, J.O., and Serra, X. (1987). PARSHL: A program for the analysis/synthesis of inharmonic sounds based on a sinusoidal representation. In: Proceedings of the 1987 International Computer Music Conference, Champaign-Urbana, Computer Music Association. Expanded version available online at http://ccrma.stanford.edu/˜jos/parshl/
  49. Smith, J.O., and Van Duyne, S.A. (1995). Commuted piano synthesis, Proceedings of the 1995 International Computer Music Conference, Banff, pp. 319–326, Computer Music Association, http://ccrma.stanford.edu/˜jos/pdf/svd95.pdf
  50. Smith, J.O., Serafin, S., Abel, J., and Berners, D. (2002). Doppler simulation and the leslie, Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26, pp. 13–20, http://www.dafx.de/
  51. Tolonen, T. (1998). Model-based analysis and re-synthesis of acoustic guitar tones, MS Thesis, Helsinki University of Technology, Espoo, Finland; Report 46, Laboratory of Acoustics and Audio Signal Processing.Google Scholar
  52. Tolonen, T., Välimäki, V., and Karjalainen, M. (2000). Modeling of tension modulation nonlinearity in plucked strings, IEEE Trans. Speech Audio Process., 8(3), 300–311.CrossRefGoogle Scholar
  53. Välimäki, V., and Tolonen, T. (1998). Development and calibration of a guitar synthesizer, J. Audio Eng. Soc. 46(9); Proceedings of the 103rd Convention of the Audio Engineering Society, New York, September 1997.Google Scholar
  54. Välimäki, V., Huopaniemi, J., Karjalainen, M., and J’anosy, Z. (1996). Physical modeling of plucked string instruments with application to real-time sound synthesis, J. Audio Eng. Soc., 44(5), 331–353.Google Scholar
  55. Välimäki, V., Pakarinen, J., Erkut, C., and Karjalainen, M. (2006). Discrete-time modelling of musical instruments, Rep. Progress Phys. 69(1), 1–78.ADSCrossRefGoogle Scholar
  56. Van Valkenburg, M.E. (1960). Introduction to Modern Network Synthesis, John Wiley, New York.Google Scholar
  57. Weinreich, G. (1977). Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Computer Research in Music and Acoustics (CCRMA)Stanford UniversityStanfordUSA

Personalised recommendations