Hammered Strings

  • Thomas D. Rossing


In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano – probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.


Spectrum Envelope Tone Sound String Excitation String Interaction Actual Piano 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Chaigne, A. and Askenfelt, A. (1994). Numerical simulation of piano strings II. Comparisons with measurements and systematic exploration of some hammer and string parameters. J. Acoust. Soc. Am. 95, 1631–1641.ADSCrossRefGoogle Scholar
  2. Askenfelt, A. and Jansson, E. (1985). From touch to string vibrations. III. Sting motion and spectra. J. Acoust. Soc. Am. 93, 2181–2196.ADSCrossRefGoogle Scholar
  3. Conklin, H. A. Jr. (1996). Design and tone in the mechanoacoustic piano. Part II. Piano structure. J. Acoust. Soc. Am. 99, 3286–3296.ADSCrossRefGoogle Scholar
  4. Ghosh, R. N. (1926). Acoustics of the pianoforte. Phys. Rev. 28, 1315–1320.CrossRefGoogle Scholar
  5. Hall, D. E. (1986). Piano string excitation in the case of small hammer mass. J. Acoust. Soc. Am. 79, 141–147.ADSCrossRefGoogle Scholar
  6. Hall, D. E. (1987a). Piano string excitation II: General solution for a hard narrow hammer. J. Acoust. Soc. Am. 81, 547–555.ADSCrossRefGoogle Scholar
  7. Hall, D. E. (1987b). Piano string excitation III: General solution for a soft narrow hammer. J. Acoust. Soc. Am. 82, 1913–1918.ADSCrossRefGoogle Scholar
  8. Hall, D. E. and Clark, P. (1987). Piano string excitation IV: The question of missing modes. J. Acoust. Soc. Am. 82, 1913–1918.ADSCrossRefGoogle Scholar
  9. Hall, D. E. and Askenfelt, A. (1992). Piano string excitation VI. Nonlinear modeling. J. Acoust. Soc. Am. 92, 95–105.ADSCrossRefGoogle Scholar
  10. Hall, D. E. and Askenfelt, A. (1988). Piano string excitation V. Spectra for real hammers and strings. J. Acoust. Soc. Am. 83, 1627–1638.ADSCrossRefGoogle Scholar
  11. von Helmholtz, H. L. F. (1877). “On the Sensation of Tone,” 4th ed. Translated by A. J. Ellis, Dover, New York, 1954.Google Scholar
  12. Peterson, D. R. (1995). Hammer/string interaction and string modes in the hammered dulcimer. Proc. Int. Symp. Mus. Acoust., Dourdan.Google Scholar
  13. Raman, C. V. and B. Banerji (1920). On Kaufmann’s Theory of the Impact of the Pianoforte Hammer. Proc. Roy. Soc. A97, 99.ADSCrossRefGoogle Scholar
  14. Russell, D. A. and Rossing, T. D. (1998). Testing the nonlinearity of piano hammers using residual shock spectra. Acta Acustica/Acustica 84, 967–975.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Computer Research in Music and Acoustics (CCRMA)Stanford UniversityStanfordUSA

Personalised recommendations