Bowed Strings

  • Thomas D. Rossing
  • Roger J. Hanson


In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13–15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins–Schelleng violin octet.


Tuning Fork Dynamic Friction Torsional Wave Vibration Cycle String Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. X. Boutillon (1991) Analytical investigations of the flattening effect: The reactive power balance rule, J. Acoust. Soc. Am. 90, 745–763.ADSCrossRefGoogle Scholar
  2. L. Cremer (1981) Physik der Geige. Hirtzel Verlag, Stuttgart. English translation by J.S. Allen, MIT Press, Cambridge, MA (1984).Google Scholar
  3. N. H. Fletcher and T. D. Rossing (1998) The Physics of musical instruments 2nd ed, Springer, New York.Google Scholar
  4. J. Gold (1995) Paganini: virtuoso, collector, and dealer, J. Violin Soc. Am. XIV, 67–88.Google Scholar
  5. K. Guettler (1994) Wave analysis of a string bowed to anomalous low frequencies, Catgut Acoust. Soc. J. 6(II), 8–14.Google Scholar
  6. R. J. Hanson, F. W. Halgedahl, and A. J. Schneider (1994) Anomalous low-pitched tones from a bowed violin string, Catgut Acoust. Soc. J. 6(II), 1–7. Copies are obtainable from Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA.Google Scholar
  7. M. Kimura (1999) How to produce subharmonics on the violin, J. New Music Res. 28(2), 178–184.CrossRefGoogle Scholar
  8. M. Kondo, and H. Kubota (1985) A new identification expression of Helmholtzian waves and their formation mechanism, Proc. SMAC 83, Stockholm, Royal Swedish Academy of Music 245–261.Google Scholar
  9. O. Krigar-Menzel, and A. Raps (1891) Aus der Sitzungberichten, Ann. Phys. Chem. 44, 613–644.Google Scholar
  10. B. Lawergren (1983) Harmonics of S-motion on bowed strings. J. Acoust. Soc. Am. 73, 2174–2179.Google Scholar
  11. M. E. McIntyre, and J. Woodhouse (1978) The acoustics of stringed musical instruents. Interdisciplinary Science Reviews 3, 157–173.Google Scholar
  12. R. Neuwirth (1994) From Sciarrino to subharmonics, Strings 44(September/October), 60–66.Google Scholar
  13. R. Pitteroff (1994) Modelling of the bowed string taking into account the width of the bow. In: Proc. SMAC 93, eds. A. Friberg, J. Ewarsson, E. Janson, and J. Sundberg, Royal Swedish Academy of Music, Stockholm.Google Scholar
  14. C. V. Raman (1918) On the mechanical theory of the vibrations of bowed stringsand of musical instruments of the violin family, with experimental verification of the results, Bull. 15, The Indian Association for the Cultivation of Science.Google Scholar
  15. T. D. Rossing, F. R. Moore, and P. A. Wheeler (2002) Science of Sound, 3rd ed. Addison-Wesley, San Francisco.Google Scholar
  16. J. C. Schelleng (1973) The bowed string and the player. J. Acoust. Soc. Am. 53, 26–41.Google Scholar
  17. J. C. Schelleng (1974) The physics of the bowed string, Sci. Am. 230(1), 87–95.ADSCrossRefGoogle Scholar
  18. R. T. Schumacher (1994) Measurements of some parameters of bowing, J. Acoust. Soc. Am. 96, 1985–1998.ADSCrossRefGoogle Scholar
  19. H. L. F. von Helmholtz (1877) On the Sensations of Tone, 4th ed., Translation by A.J. Ellis, Dover, New York (1954).Google Scholar
  20. J. Woodhouse (1995). Self-sustained musical oscillators. In: Mechanics of Musical Instruments, eds. A. Hirschberg, J. Kergomard, and G. Weinreich, Springer-Verlag, Wien.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Computer Research in Music and Acoustics (CCRMA)Stanford UniversityStanfordUSA

Personalised recommendations