Hepatic Carbohydrate Metabolism

Part of the Molecular Pathology Library book series (MPLB, volume 5)


The liver plays a unique role in controlling carbohydrate metabolism by maintaining glucose concentrations in a normal range. This is achieved by a tightly regulated system of enzymes and kinases regulating either glucose breakdown, storage as glycogen, or synthesis in hepatocytes. This process is under the control of glucoregulatory mediators among which insulin plays a key role. The fact that insulin is secreted into the portal system, takes the same route as absorbed glucose, and that the liver eliminates a large portion of the portal insulin at the first pass highlights the role of the liver not only as glucose supply, but as a site of glucose uptake and storage.


Insulin Resistance Insulin Receptor Substrate Hepatic Glucose Production Growth Hormone Action Acid Labile Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pagliassotti MJ, Cherrington AD. Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol. 1992;54:847–60.PubMedGoogle Scholar
  2. 2.
    Radziuk J. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am J Physiol. 1989;257(2 pt 1):E145–57.PubMedGoogle Scholar
  3. 3.
    Pencek RR, James F, Lacy DB, et al. Interaction of insulin and prior exercise in control of hepatic metabolism of a glucose load. Diabetes. 2003;52(8):1897–903.PubMedGoogle Scholar
  4. 4.
    Roden M, Petersen KF, Shulman GI. Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Prog Horm Res. 2001;56:219–37.PubMedGoogle Scholar
  5. 5.
    Gardemann A, Strulik H, Jungermann K. A portal-arterial glucose concentration gradient as a signal for an insulin-dependent net glucose uptake in perfused rat liver. FEBS Lett. 1986;202(2):255–9.PubMedGoogle Scholar
  6. 6.
    Stumpel F, Scholtka B, Jungermann K. Stimulation by portal insulin of intestinal glucose absorption via hepatoenteral nerves and prostaglandin E2 in the isolated, jointly perfused small intestine and liver of the rat. Ann NY Acad Sci. 2000;915:111–6.PubMedGoogle Scholar
  7. 7.
    Toffolo G, Campioni M, Basu R, Rizza RA, Cobelli C. A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab. 2006;290(1):E169–76.PubMedGoogle Scholar
  8. 8.
    Valera A, Bosch F. Glucokinase expression in rat hepatoma cells induces glucose uptake and is rate limiting in glucose utilization. Eur J Biochem. 1994;222(2):533–9.PubMedGoogle Scholar
  9. 9.
    Girard J, Ferre P, Foufelle F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr. 1997;17:325–52.PubMedGoogle Scholar
  10. 10.
    Ferre T, Riu E, Bosch F, Valera A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 1996;10(10):1213–8.PubMedGoogle Scholar
  11. 11.
    Ferre T, Pujol A, Riu E, Bosch F, Valera A. Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci USA. 1996;93(14):7225–30.PubMedGoogle Scholar
  12. 12.
    Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ. Glucokinase activators: molecular tools for studying the physiology of insulin-secreting cells. Biochem Soc Trans. 2007;35(Pt 5):1208–10.PubMedGoogle Scholar
  13. 13.
    Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. 2004;30(5):398–408.PubMedGoogle Scholar
  14. 14.
    Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70.PubMedGoogle Scholar
  15. 15.
    Dentin R, Pegorier JP, Benhamed F, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279(19):20314–26.PubMedGoogle Scholar
  16. 16.
    Giacca A, Fisher SJ, Shi ZQ, Gupta R, Lickley HL, Vranic M. Importance of peripheral insulin levels for insulin-induced suppression of glucose production in depancreatized dogs. J Clin Invest. 1992;90(5):1769–77.PubMedGoogle Scholar
  17. 17.
    Lewis GF, Zinman B, Groenewoud Y, Vranic M, Giacca A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes. 1996;45(4):454–62.PubMedGoogle Scholar
  18. 18.
    Ferrannini E, Galvan AQ, Gastaldelli A, et al. Insulin: new roles for an ancient hormone. Eur J Clin Invest. 1999;29(10):842–52.PubMedGoogle Scholar
  19. 19.
    Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK. Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 2002;277(35):32234–42.PubMedGoogle Scholar
  20. 20.
    Hall RK, Yamasaki T, Kucera T, Waltner-Law M, O’Brien R, Granner DK. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J Biol Chem. 2000;275(39):30169–75.PubMedGoogle Scholar
  21. 21.
    O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996;76(4):1109–61.PubMedGoogle Scholar
  22. 22.
    Lewis GF, Vranic M, Giacca A. Role of free fatty acids and glucagon in the peripheral effect of insulin on glucose production in humans. Am J Physiol. 1998;275(1 pt 1):E177–86.PubMedGoogle Scholar
  23. 23.
    Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82.PubMedGoogle Scholar
  24. 24.
    Cherrington AD, Edgerton D, Sindelar DK. The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia. 1998;41(9):987–96.PubMedGoogle Scholar
  25. 25.
    Sindelar DK, Chu CA, Venson P, Donahue EP, Neal DW, Cherrington AD. Basal hepatic glucose production is regulated by the portal vein insulin concentration. Diabetes. 1998;47(4):523–9.PubMedGoogle Scholar
  26. 26.
    Edgerton DS, Lautz M, Scott M, et al. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116(2):521–7.PubMedGoogle Scholar
  27. 27.
    Fisher SJ, Kahn CR. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 2003;111(4):463–8.PubMedGoogle Scholar
  28. 28.
    Okamoto H, Obici S, Accili D, Rossetti L. Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. J Clin Invest. 2005;115(5):1314–22.PubMedGoogle Scholar
  29. 29.
    Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6(1):87–97.PubMedGoogle Scholar
  30. 30.
    Buettner C, Patel R, Muse ED, et al. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J Clin Invest. 2005;115(5):1306–13.PubMedGoogle Scholar
  31. 31.
    Cherrington AD. The role of hepatic insulin receptors in the regulation of glucose production. J Clin Invest. 2005;115(5):1136–9.PubMedGoogle Scholar
  32. 32.
    Girard J. Insulin’s effect on the liver: “direct or indirect?” continues to be the question. J Clin Invest. 2006;116(2):302–4.PubMedGoogle Scholar
  33. 33.
    Jungermann K, Gardemann A, Beuers U, et al. Regulation of liver metabolism by the hepatic nerves. Adv Enzyme Regul. 1987;26:63–88.PubMedGoogle Scholar
  34. 34.
    Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1(1):53–61.PubMedGoogle Scholar
  35. 35.
    Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90(4):1323–7.PubMedGoogle Scholar
  36. 36.
    Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987;64(1):106–10.PubMedGoogle Scholar
  37. 37.
    Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992;54:885–909.PubMedGoogle Scholar
  38. 38.
    Christ B, Nath A, Bastian H, Jungermann K. Regulation of the expression of the phosphoenolpyruvate carboxykinase gene in cultured rat hepatocytes by glucagon and insulin. Eur J Biochem. 1988;178(2):373–9.PubMedGoogle Scholar
  39. 39.
    Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413(6852):131–8.PubMedGoogle Scholar
  40. 40.
    Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.PubMedGoogle Scholar
  41. 41.
    Christ B, Yazici E, Nath A. Phosphatidylinositol 3-kinase and protein kinase C contribute to the inhibition by interleukin 6 of phosphoenolpyruvate carboxykinase gene expression in cultured rat hepatocytes. Hepatology. 2000;31(2):461–8.PubMedGoogle Scholar
  42. 42.
    Metzger S, Goldschmidt N, Barash V, et al. Interleukin-6 secretion in mice is associated with reduced glucose-6-phosphatase and liver glycogen levels. Am J Physiol. 1997;273(2 pt 1):E262–7.PubMedGoogle Scholar
  43. 43.
    Inoue H, Ogawa W, Ozaki M, et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10(2):168–74.PubMedGoogle Scholar
  44. 44.
    Sun Y, Liu S, Ferguson S, et al. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem. 2002;277(26):23301–7.PubMedGoogle Scholar
  45. 45.
    Trinh KY, O’Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998;273(47):31615–20.PubMedGoogle Scholar
  46. 46.
    Barzilai N, Rossetti L. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 1993;268(33):25019–25.PubMedGoogle Scholar
  47. 47.
    Burchell A, Cain DI. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia. 1985;28(11):852–6.PubMedGoogle Scholar
  48. 48.
    Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice over-expressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA. 1994; 91(19):9151–4.PubMedGoogle Scholar
  49. 49.
    Samuel VT, Beddow SA, Iwasaki T, et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc Natl Acad Sci USA. 2009;106(29):12121–6.PubMedGoogle Scholar
  50. 50.
    Yakar S, Liu JL, Fernandez AM, et al. Liver-specific Igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes. 2001;50(5):1110–8.PubMedGoogle Scholar
  51. 51.
    Fernandez AM, Kim JK, Yakar S, et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 2001;15(15):1926–34.PubMedGoogle Scholar
  52. 52.
    Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y, LeRoith D. Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes. 2003;52(10):2483–9.PubMedGoogle Scholar
  53. 53.
    Yakar S, Setser J, Zhao H, et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004;113(1):96–105.PubMedGoogle Scholar
  54. 54.
    O’Connell T, Clemmons DR. IGF-I/IGF-binding protein-3 combination improves insulin resistance by GH-dependent and independent mechanisms. J Clin Endocrinol Metab. 2002;87(9):4356–60.PubMedGoogle Scholar
  55. 55.
    Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring). 2006;14(5):794–8.Google Scholar
  56. 56.
    Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–70.PubMedGoogle Scholar
  57. 57.
    Kotelevtsev Y, Holmes MC, Burchell A, et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci USA. 1997;94(26): 14924–9.PubMedGoogle Scholar
  58. 58.
    Morton NM, Holmes MC, Fievet C, et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem. 2001;276(44):41293–300.PubMedGoogle Scholar
  59. 59.
    Masuzaki H, Yamamoto H, Kenyon CJ, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112(1):83–90.PubMedGoogle Scholar
  60. 60.
    Basu R, Basu A, Grudzien M, et al. Liver is the site of splanchnic cortisol production in obese nondiabetic humans. Diabetes. 2009;58(1):39–45.PubMedGoogle Scholar
  61. 61.
    Paulsen SK, Pedersen SB, Jorgensen JO, et al. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue. J Clin Endocrinol Metab. 2006;91(3):1093–8.PubMedGoogle Scholar
  62. 62.
    Thieringer R, Hermanowski-Vosatka A. Inhibition of 11beta-HSD1 as a novel treatment for the metabolic syndrome: do glucocorticoids play a role? Expert Rev Cardiovasc Ther. 2005;3(5):911–24.PubMedGoogle Scholar
  63. 63.
    Wang M. Inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 for the treatment of metabolic syndrome. Curr Opin Investig Drugs. 2006;7(4):319–23.PubMedGoogle Scholar
  64. 64.
    White MF. The insulin signalling system and the IRS proteins. Diabetologia. 1997;40 suppl 2:S2–17.PubMedGoogle Scholar
  65. 65.
    Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol. 2002;12(2):65–71.PubMedGoogle Scholar
  66. 66.
    Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 2001;15(12):2099–111.PubMedGoogle Scholar
  67. 67.
    D’Alfonso R, Marini MA, Frittitta L, et al. Polymorphisms of the insulin receptor substrate-2 in patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88(1):317–22.PubMedGoogle Scholar
  68. 68.
    Suzuki R, Tobe K, Aoyama M, et al. Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(−/−) mice. J Biol Chem. 2004;279(24):25039–49.PubMedGoogle Scholar
  69. 69.
    Dong X, Park S, Lin X, Copps K, Yi X, White MF. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest. 2006;116(1):101–14.PubMedGoogle Scholar
  70. 70.
    Simmgen M, Knauf C, Lopez M, et al. Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia. 2006;49(3):552–61.PubMedGoogle Scholar
  71. 71.
    Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396(6706):77–80.PubMedGoogle Scholar
  72. 72.
    Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedGoogle Scholar
  73. 73.
    Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 2009;296(4):E581–91.PubMedGoogle Scholar
  74. 74.
    Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280(6):4617–26.PubMedGoogle Scholar
  75. 75.
    Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61.PubMedGoogle Scholar
  76. 76.
    Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61.PubMedGoogle Scholar
  77. 77.
    Ozawa K, Miyazaki M, Matsuhisa M, et al. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes. 2005;54(3):657–63.PubMedGoogle Scholar
  78. 78.
    Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–8.PubMedGoogle Scholar
  79. 79.
    Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedGoogle Scholar
  80. 80.
    Gao Z, Zhang X, Zuberi A, et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol. 2004;18(8):2024–34.PubMedGoogle Scholar
  81. 81.
    Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–6.PubMedGoogle Scholar
  82. 82.
    Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I )(kappa) B/NF-(kappa) B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord. 2003;27 suppl 3:S49–52.PubMedGoogle Scholar
  83. 83.
    Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.PubMedGoogle Scholar
  84. 84.
    Tremblay F, Brule S, Hee Um S, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci USA. 2007;104(35):14056–61.PubMedGoogle Scholar
  85. 85.
    Krebs M, Brunmair B, Brehm A, et al. The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes. 2007;56(6):1600–7.PubMedGoogle Scholar
  86. 86.
    Fraenkel M, Ketzinel-Gilad M, Ariav Y, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes. 2008;57(4):945–57.PubMedGoogle Scholar
  87. 87.
    Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.PubMedGoogle Scholar
  88. 88.
    Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.PubMedGoogle Scholar
  89. 89.
    Bugianesi E, Pagotto U, Manini R, et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab. 2005;90(6):3498–504.PubMedGoogle Scholar
  90. 90.
    Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology. 2004;40(1):46–54.PubMedGoogle Scholar
  91. 91.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedGoogle Scholar
  92. 92.
    Kaser S, Moschen A, Cayon A, et al. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut. 2005;54(1):117–21.PubMedGoogle Scholar
  93. 93.
    Kaser S, Foger B, Waldenberger P, et al. Transjugular intrahepatic portosystemic shunt (TIPS) augments hyperinsulinemia in patients with cirrhosis. J Hepatol. 2000;33(6):902–6.PubMedGoogle Scholar
  94. 94.
    Harle P, Straub RH. Leptin is a link between adipose tissue and inflammation. Ann NY Acad Sci. 2006;1069:454–62.PubMedGoogle Scholar
  95. 95.
    Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1345–50.PubMedGoogle Scholar
  96. 96.
    Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42(6):1339–48.PubMedGoogle Scholar
  97. 97.
    Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol. 2002;37(2):206–13.PubMedGoogle Scholar
  98. 98.
    McCullough AJ, Bugianesi E, Marchesini G, Kalhan SC. Gender-dependent alterations in serum leptin in alcoholic cirrhosis. Gastroenterology. 1998;115(4):947–53.PubMedGoogle Scholar
  99. 99.
    Nolte W, Wirtz M, Rossbach C, et al. TIPS implantation raises leptin levels in patients with liver cirrhosis. Exp Clin Endocrinol Diabetes. 2003;111(7):435–42.PubMedGoogle Scholar
  100. 100.
    Liangpunsakul S, Chalasani N. Relationship between unexplained elevations in alanine aminotransferase and serum leptin in U.S. adults: results from the Third National Health and Nutrition Examination Survey (NHANES III). J Clin Gastroenterol. 2004;38(10):891–7.PubMedGoogle Scholar
  101. 101.
    Bethanis SK, Theocharis SE. Leptin in the field of hepatic fibrosis: a pivotal or an incidental player? Dig Dis Sci. 2006;51:1685–96.PubMedGoogle Scholar
  102. 102.
    Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.PubMedGoogle Scholar
  103. 103.
    Rajala MW, Qi Y, Patel HR, et al. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes. 2004;53(7):1671–9.PubMedGoogle Scholar
  104. 104.
    Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes. 2004;53(8):1937–41.PubMedGoogle Scholar
  105. 105.
    Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest. 2003;111(2):225–30.PubMedGoogle Scholar
  106. 106.
    Muse ED, Obici S, Bhanot S, et al. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest. 2004;114(2):232–9.PubMedGoogle Scholar
  107. 107.
    Way JM, Gorgun CZ, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem. 2001;276(28):25651–3.PubMedGoogle Scholar
  108. 108.
    Engeli S, Bohnke J, Feldpausch M, et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res. 2004;12(1):9–17.PubMedGoogle Scholar
  109. 109.
    Patel K, Muir A, McHutchison JG, Patton HM. A link between leptin and steatosis in chronic hepatitis C? Time to weigh up the fats. Am J Gastroenterol. 2003;98(5):952–5.PubMedGoogle Scholar
  110. 110.
    Savage DB, Sewter CP, Klenk ES, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes. 2001;50(10):2199–202.PubMedGoogle Scholar
  111. 111.
    McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S. Resistin, central obesity, and type 2 diabetes. Lancet. 2002;359(9300):46–7.PubMedGoogle Scholar
  112. 112.
    McTernan PG, McTernan CL, Chetty R, et al. Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab. 2002;87(5):2407.PubMedGoogle Scholar
  113. 113.
    Lin SY, Sheu WH, Chen WY, Lee FY, Huang CJ. Stimulated resistin expression in white adipose of rats with bile duct ligation-induced liver cirrhosis: relationship to cirrhotic hyperinsulinemia and increased tumor necrosis factor-alpha. Mol Cell Endocrinol. 2005;232(1–2):1–8.PubMedGoogle Scholar
  114. 114.
    Yagmur E, Trautwein C, Gressner AM, Tacke F. Resistin serum levels are associated with insulin resistance, disease severity, clinical complications, and prognosis in patients with chronic liver diseases. Am J Gastroenterol. 2006;101(6):1244–52.PubMedGoogle Scholar
  115. 115.
    Bahr MJ, Ockenga J, Boker KH, Manns MP, Tietge UJ. Elevated resistin levels in cirrhosis are associated with the proinflammatory state and altered hepatic glucose metabolism but not with insulin resistance. Am J Physiol Endocrinol Metab. 2006;291(2): E199–206.PubMedGoogle Scholar
  116. 116.
    Pagano C, Soardo G, Pilon C, et al. Increased serum resistin in nonalcoholic fatty liver disease is related to liver disease severity and not to insulin resistance. J Clin Endocrinol Metab. 2006;91(3):1081–6.PubMedGoogle Scholar
  117. 117.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.PubMedGoogle Scholar
  118. 118.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–4.PubMedGoogle Scholar
  119. 119.
    Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343–50.PubMedGoogle Scholar
  120. 120.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.PubMedGoogle Scholar
  121. 121.
    Fernandez-Real JM, Vayreda M, Richart C, et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab. 2001;86(3):1154–9.PubMedGoogle Scholar
  122. 122.
    Andreozzi F, Laratta E, Cardellini M, et al. Plasma interleukin-6 levels are independently associated with insulin secretion in a cohort of Italian-Caucasian nondiabetic subjects. Diabetes. 2006;55(7):2021–4.PubMedGoogle Scholar
  123. 123.
    Weigert C, Hennige AM, Brodbeck K, Haring HU, Schleicher ED. Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. Am J Physiol Endocrinol Metab. 2005;289(2):E251–7.PubMedGoogle Scholar
  124. 124.
    Weigert C, Hennige AM, Lehmann R, et al. Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem. 2006;281(11):7060–7.PubMedGoogle Scholar
  125. 125.
    Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev. 2008;9(1):20–9.PubMedGoogle Scholar
  126. 126.
    Di Gregorio GB, Hensley L, Lu T, Ranganathan G, Kern PA. Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol Endocrinol Metab. 2004;287(1):E182–7.PubMedGoogle Scholar
  127. 127.
    Wallenius V, Wallenius K, Ahren B, et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8(1):75–9.PubMedGoogle Scholar
  128. 128.
    Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med. 1999;107(5):450–5.PubMedGoogle Scholar
  129. 129.
    Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–50.PubMedGoogle Scholar
  130. 130.
    Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987–1000.PubMedGoogle Scholar
  131. 131.
    Kim SP, Ellmerer M, Van Citters GW, Bergman RN. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes. 2003;52(10):2453–60.PubMedGoogle Scholar
  132. 132.
    Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes. 1991;40(11):1397–403.PubMedGoogle Scholar
  133. 133.
    Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA. 2001;98(13):7522–7.PubMedGoogle Scholar
  134. 134.
    Friedman J. Fat in all the wrong places. Nature. 2002;415(6869):268–9.PubMedGoogle Scholar
  135. 135.
    Caldwell SH, Swerdlow RH, Khan EM, et al. Mitochondrial abnormalities in non-alcoholic steatohepatitis. J Hepatol. 1999;31(3):430–4.PubMedGoogle Scholar
  136. 136.
    Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest. 2006;116(9):2464–72.PubMedGoogle Scholar
  137. 137.
    Allison ME, Wreghitt T, Palmer CR, Alexander GJ. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population. J Hepatol. 1994;21(6):1135–9.PubMedGoogle Scholar
  138. 138.
    Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med. 2000;133(8):592–9.PubMedGoogle Scholar
  139. 139.
    Mangia A, Schiavone G, Lezzi G, et al. HCV and diabetes mellitus: evidence for a negative association. Am J Gastroenterol. 1998;93(12):2363–7.PubMedGoogle Scholar
  140. 140.
    Shaheen M, Echeverry D, Oblad MG, Montoya MI, Teklehaimanot S, Akhtar AJ. Hepatitis C, metabolic syndrome, and inflammatory markers: results from the Third National Health and Nutrition Examination Survey [NHANES III]. Diabetes Res Clin Pract. 2006;75:320–6.PubMedGoogle Scholar
  141. 141.
    Hui JM, Sud A, Farrell GC, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology. 2003;125(6):1695–704.PubMedGoogle Scholar
  142. 142.
    Tazawa J, Maeda M, Nakagawa M, et al. Diabetes mellitus may be associated with hepatocarcinogenesis in patients with chronic hepatitis C. Dig Dis Sci. 2002;47(4):710–5.PubMedGoogle Scholar
  143. 143.
    Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126(3):840–8.PubMedGoogle Scholar
  144. 144.
    Tsutsumi T, Suzuki T, Moriya K, et al. Alteration of intrahepatic cytokine expression and AP-1 activation in transgenic mice expressing hepatitis C virus core protein. Virology. 2002;304(2):415–24.PubMedGoogle Scholar
  145. 145.
    Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384–92.PubMedGoogle Scholar
  146. 146.
    Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165(5):1499–508.PubMedGoogle Scholar
  147. 147.
    Nothnagel E. Handbuch Spezielle Pathologie Therapie 7. A.Holder,Wien. Glycosurie und Diabetes durch experimentelle Insulte und Krankheiten der Leber. In: E. N, editor. Handbuch Spez. Path. Terap. Vol B and 7. Wien: A. Holder; 1898: pp. 38–49.Google Scholar
  148. 148.
    Buzzelli G, Chiarantini E, Cotrozzi G, et al. Estimate of prevalence of glucose intolerance in chronic liver disease. Degree of agreement among some diagnostic criteria. Liver. 1988;8(6):354–9.PubMedGoogle Scholar
  149. 149.
    Creutzfeldt W, Frerichs H, Sickinger K. Liver diseases and diabetes mellitus. Prog Liver Dis. 1970;3:371–407.PubMedGoogle Scholar
  150. 150.
    Gentile S, Turco S, Guarino G, et al. Effect of treatment with acarbose and insulin in patients with non-insulin-dependent diabetes mellitus associated with non-alcoholic liver cirrhosis. Diabetes Obes Metab. 2001;3(1):33–40.PubMedGoogle Scholar
  151. 151.
    Holstein A, Hinze S, Thiessen E, Plaschke A, Egberts EH. Clinical implications of hepatogenous diabetes in liver cirrhosis. J Gastroen terol Hepatol. 2002;17(6):677–81.PubMedGoogle Scholar
  152. 152.
    Bianchi G, Marchesini G, Zoli M, Bugianesi E, Fabbri A, Pisi E. Prognostic significance of diabetes in patients with cirrhosis. Hepatology. 1994;20(1 pt 1):119–25.PubMedGoogle Scholar
  153. 153.
    Vannini P, Forlani G, Marchesini G, Ciavarella A, Zoli M, Pisi E. The euglycemic clamp technique in patients with liver cirrhosis. Horm Metab Res. 1984;16(7):341–3.PubMedGoogle Scholar
  154. 154.
    Muller MJ, Willmann O, Rieger A, et al. Mechanism of insulin resistance associated with liver cirrhosis. Gastroenterology. 1992;102(6):2033–41.PubMedGoogle Scholar
  155. 155.
    Kruszynska Y, Williams N, Perry M, Home P. The relationship between insulin sensitivity and skeletal muscle enzyme activities in hepatic cirrhosis. Hepatology. 1988;8(6):1615–9.PubMedGoogle Scholar
  156. 156.
    Taylor R, Heine RJ, Collins J, James OF, Alberti KG. Insulin action in cirrhosis. Hepatology. 1985;5(1):64–71.PubMedGoogle Scholar
  157. 157.
    Nolte W, Hartmann H, Ramadori G. Glucose metabolism and liver cirrhosis. Exp Clin Endocrinol Diabetes. 1995;103(2):63–74.PubMedGoogle Scholar
  158. 158.
    Raddatz D, Nolte W, Rossbach C, et al. Measuring the effect of a study meal on portal concentrations of glucagon-like peptide 1 (GLP-1) in non diabetic and diabetic patients with liver cirrhosis: transjugular intrahepatic portosystemic stent shunt (TIPSS) as a new method for metabolic measurements. Exp Clin Endocrinol Diabetes. 2008;116(8):461–7.PubMedGoogle Scholar
  159. 159.
    Rittig K, Peter A, Baltz KM, et al. The CCR2 promoter polymorphism T-960A, but not the serum MCP-1 level, is associated with endothelial function in prediabetic individuals. Atherosclerosis. 2008;198(2):338–46.PubMedGoogle Scholar
  160. 160.
    Kruszynska YT, Home PD, McIntyre N. Relationship between insulin sensitivity, insulin secretion and glucose tolerance in cirrhosis. Hepatology. 1991;14(1):103–11.PubMedGoogle Scholar
  161. 161.
    Raddatz D, Rossbach C, Buchwald A, Scholz KH, Ramadori G, Nolte W. Fasting hyperglucagonemia in patients with transjugular intrahepatic portosystemic shunts (TIPS). Exp Clin Endocrinol Diabetes. 2005;113(5):268–74.PubMedGoogle Scholar
  162. 162.
    Perseghin G, Mazzaferro V, Sereni LP, et al. Contribution of reduced insulin sensitivity and secretion to the pathogenesis of hepatogenous diabetes: effect of liver transplantation. Hepatology. 2000;31(3):694–703.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Gastroenterology and EndocrinologyUniversity of GöttingenGöttingenGermany

Personalised recommendations