Advertisement

Current and Future Methods for Diagnosis of Neoplastic Liver Disease

  • Arief A. Suriawinata
  • Michael Tsapakos
  • Gregory J. Tsongalis
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 5)

Abstract

One of the largest of the visceral organs, the liver provides numerous critical functions for homeostatic balance in the human body. In this regard, variations to liver function through biochemical, infectious, autoimmune, and neoplastic mechanisms result in abnormal and/or disease phenotypes. Disease processes which affect the liver can result from a wide variety of insulting agents, and abnormal liver function can be detected through numerous diagnostic technologies and methods.

Keywords

Liver Biopsy Immunohistochemical Stain Ancillary Study Gadobenate Dimeglumine Metastatic Liver Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Monzawa S et al. Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging. AJR. 2007;188:147–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayashi M, Matsui O, Ueda K, et al. Correlation between the blood supply and grade of malignancy of heptocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR. 1999;172:969–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Tajima T, Honda H, Taguchi K, et al. Sequential hemodynamic change in hepatocellular carcinoma and dysplastic nodules: CT angiography and pathologic correlation. AJR. 2002;178:885–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Park Y, Kim Y, Rhim H, et al. Arterial enhancement of hepatocellular carcinoma before radiofrequency ablation as a predictor of postablation local tumor progression. AJR. 2009;193:757–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Stevens WR, Gulino SP, Batts KP, et al. Mosaic patatern of hepatocellular carcinoma: histologic basis for a characteristic CT appearance. J Comput Assist Tomogr. 1996;20:337–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Rummeny E, Weissleder R, Stark DD, et al. Primary liver tumors: diagnosis MRI imaging. AJR. 1989;152:63–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshikawa J, Matsui O, Takashima T, et al. Fatty metamorphosis in hepatocellular carcinoma: radiologic featurs in 10 cases. AJR. 1988;151:717–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Rummeny E, Weissleder R, Sironi S, et al. Central scars in primary liver tumors: MR features, specificity, and pathologic correlation. Radiology. 1989;171:323–6.PubMedGoogle Scholar
  9. 9.
    Mathieu D, Grenier P, Larde D, et al. Portal vein involvement in hepatocellular carcinoma: dynamic CT features. Radiology. 1984;152:127–32.PubMedGoogle Scholar
  10. 10.
    Miller JH, Stanley P, Gates GF. Radiology of glycogen storage diseases. AJR. 1979;132:379.PubMedCrossRefGoogle Scholar
  11. 11.
    Stevens WR, Johnson CD, Stephens DH, Batts KP. CT findings in hepatocellular carcinoma: correlation of tumor characteristics with causative factors, tumor size, and histologic tumor grade. Radiology. 1994;191:531–7.PubMedGoogle Scholar
  12. 12.
    Teefey SA, Stephens DH, James EM, et al. Computed tomography and ultrasonography of hepatoma. Clin Radiol. 1986;37:339–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Rode A, Bancel B, Douek P, et al. Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr. 2001;25:327–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Marin D, Martino M, Gerrisi A, et al. Hepatoclellular carcinoma in patients with cirrhosis: qualitative comparison of gadobenate dimeglumine-enhanced MR Imaging and Multiphasic 64-section CT. Radiology. 2009;251:85–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim YK, Kim CS, Chung GH, et al. Comparison of gadobenate dimeglumine-enhanced dynamic MRI and 16-MCDT for the detection of hepatocellular carcinoma. AJR. 2006;186:149–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Spinazzi A, Lorusso V, Pirovano G, et al. Safety, tolerance, biodistribution and MRI imaging enhancement of the liver with gadobenate dimeglumine. Acad Radiol. 1999;6:282–91.PubMedCrossRefGoogle Scholar
  17. 17.
    van Leeuwen DJ. The imager replacing the pathologist in the diagnosis of hepatobiliary and pancreatic disease. Ann Diagn Pathol. 2001;5(1):57–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Siegel CA, Silas AM, Suriawinata AA, van Leeuwen DJ. Liver biopsy 2005: when and how? Cleve Clin J Med. 2005;72(3):199–201; 6, 8 passim.Google Scholar
  19. 19.
    Perrault J, McGill DB, Ott BJ, Taylor WF. Liver biopsy: complications in 1000 inpatients and outpatients. Gastroenterology. 1978;74(1):103–6.PubMedGoogle Scholar
  20. 20.
    Metcalfe MS, Bridgewater FH, Mullin EJ, Maddern GJ. Useless and dangerous – fine needle aspiration of hepatic colorectal metastases. BMJ. 2004;328(7438):507–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Takamori R, Wong LL, Dang C, Wong L. Needle-tract implantation from hepatocellular cancer: is needle biopsy of the liver always necessary? Liver Transpl. 2000;6(1):67–72.PubMedGoogle Scholar
  22. 22.
    Onofre AS, Pomjanski N, Buckstegge B, Bocking A. Immunocytochemical diagnosis of hepatocellular carcinoma and identification of carcinomas of unknown primary metastatic to the liver on fine-needle aspiration cytologies. Cancer. 2007;111(4):259–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Kupnicka D, Sztajer S, Kordek R, Piekarski J. Comparison of core and fine needle aspiration biopsies for diagnosis of liver masses. Hepatogastroenterology. 2008;55(86–87):1710–5.PubMedGoogle Scholar
  24. 24.
    Franca AV, Valerio HM, Trevisan M, et al. Fine needle aspiration biopsy for improving the diagnostic accuracy of cut needle biopsy of focal liver lesions. Acta Cytol. 2003;47(3):332–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerber MA, Thung SN, Bodenheimer Jr HC, Kapelman B, Schaffner F. Characteristic histologic triad in liver adjacent to metastatic neoplasm. Liver. 1986;6(2):85–8.PubMedGoogle Scholar
  26. 26.
    Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35(3):421–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Laumonier H, Bioulac-Sage P, Laurent C, et al. Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology. 2008;48(3):808–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Zucman-Rossi J et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology. 2006;43(3):515–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Monga SP. Hepatic adenomas: presumed innocent until proben to be beta-catenin mutated. Hepatology. 2006;43(3):401–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol. 2008;48 Suppl 1:S20–37.PubMedCrossRefGoogle Scholar
  31. 31.
    Llovet JM, Chen Y, Wurmbach E, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. 2006;131(6):1758–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Bartels CL, Tsongalis GJ. MiRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.PubMedCrossRefGoogle Scholar
  33. 33.
  34. 34.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25(17):2537–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47(6):1955–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Li W, Xie L, He X, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer. 2008;123(7):1616–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Jiang J, Gusev Y, Aderca I, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res. 2008;14(2):419–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Greco FA, Erlander MG. Molecular classification of cancers of unknown primary site. Mol Diagn Ther. 2009;13(6):367–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol. 2010;17(4):1168–76.Google Scholar
  41. 41.
    Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2009;6:423–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Arief A. Suriawinata
  • Michael Tsapakos
  • Gregory J. Tsongalis
    • 1
  1. 1.Department of Pathology, Dartmouth Medical SchoolDartmouth Hitchcock Medical Center and Norris Cotton Cancer CenterLebanonUSA

Personalised recommendations