Skip to main content

Neoplasms of the Gallbladder

  • Chapter
  • First Online:
Molecular Pathology of Liver Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

  • 3622 Accesses

Abstract

Gallbladder cancer (GBC) is an uncommon disease in most developed countries, with the exception of some geographical areas. The highest gallbladder cancer incidence rates have been reported in women from North India (21.5/100,000), Chile (18.1/100,000), Pakistan (13.8/100,000), and Ecuador (12.9/100,000). High incidences have also been found in Korea and Japan and some central and eastern European countries such as Poland, the Czech Republic, and Slovakia [1, 2]. GBC is up to three times higher among women than men in most countries and up to six times in select populations [1, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118(7):1591–602.

    PubMed  CAS  Google Scholar 

  2. Medina E, Kaempffer AM. Cancer mortality in Chile: epidemiological considerations. Rev Med Chil. 2001;129(10):1195–202.

    PubMed  CAS  Google Scholar 

  3. Roa I, Araya JC, Wistuba I, Villaseca M, de Aretxabala X, Burgos L. Gallbladder cancer in the IX Region of Chile. Impact of the anatomopathological study of 474 cases. Rev Med Chil. 1994;122(11):1248–56.

    PubMed  CAS  Google Scholar 

  4. Sanders G, Kingsnorth AN. Gallstones. BMJ. 2007;335(7614):295–9.

    PubMed  Google Scholar 

  5. Tazuma S, Kajiyama G. Carcinogenesis of malignant lesions of the gall bladder. The impact of chronic inflammation and gallstones. Langenbecks Arch Surg. 2001;386(3):224–9.

    PubMed  CAS  Google Scholar 

  6. Hsing AW, Bai Y, Andreotti G, et al. Family history of gallstones and the risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Int J Cancer. 2007;121(4):832–8.

    PubMed  CAS  Google Scholar 

  7. Roa I, Ibacache G, Roa J, Araya J, de Aretxabala X, Munoz S. Gallstones and gallbladder cancer-volume and weight of gallstones are associated with gallbladder cancer: a case-control study. J Surg Oncol. 2006;93(8):624–8.

    PubMed  Google Scholar 

  8. Vitetta L, Sali A, Little P, Mrazek L. Gallstones and gall bladder carcinoma. Aust N Z J Surg. 2000;70(9):667–73.

    PubMed  CAS  Google Scholar 

  9. Csendes A, Becerra M, Rojas J, Medina E. Number and size of stones in patients with asymptomatic and symptomatic gallstones and gallbladder carcinoma: a prospective study of 592 cases. J Gastrointest Surg. 2000;4(5):481–5.

    PubMed  CAS  Google Scholar 

  10. Mano H, Roa I, Araya JC, et al. Comparison of mutagenic activity of bile between Chilean and Japanese female patients having cholelithiasis. Mutat Res. 1996;371(1–2):73–7.

    PubMed  Google Scholar 

  11. Larsson SC, Wolk A. Obesity and the risk of gallbladder cancer: a meta-analysis. Br J Cancer. 2007;96(9):1457–61.

    PubMed  CAS  Google Scholar 

  12. Matsuba T, Qiu D, Kurosawa M, et al. Overview of epidemiology of bile duct and gallbladder cancer focusing on the JACC Study. J Epidemiol. 2005;15 Suppl 2:S150–6.

    PubMed  Google Scholar 

  13. Pandey M. Environmental pollutants in gallbladder carcinogenesis. J Surg Oncol. 2006;93(8):640–3.

    PubMed  CAS  Google Scholar 

  14. Enomoto M, Naoe S, Harada M, Miyata K, Saito M, Noguchi Y. Carcinogenesis in extrahepatic bile duct and gallbladder – carcinogenic effect of N-hydroxy-2-acetamidofluorene in mice fed a “gallstone-inducing” diet. Jpn J Exp Med. 1974;44(1):37–54.

    PubMed  CAS  Google Scholar 

  15. Shukla PJ, Barreto SG, Gupta P, et al. Is there a role for estrogen and progesterone receptors in gall bladder cancer? HPB (Oxford). 2007;9(4):285–8.

    CAS  Google Scholar 

  16. Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95(3):784–7.

    PubMed  CAS  Google Scholar 

  17. Nath G, Singh H, Shukla VK. Chronic typhoid carriage and carcinoma of the gallbladder. Eur J Cancer Prev. 1997;6(6):557–9.

    PubMed  CAS  Google Scholar 

  18. Kumar S. Infection as a risk factor for gallbladder cancer. J Surg Oncol. 2006;93(8):633–9.

    PubMed  Google Scholar 

  19. Fox JG, Dewhirst FE, Shen Z, et al. Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology. 1998;114(4):755–63.

    PubMed  CAS  Google Scholar 

  20. Fukuda K, Kuroki T, Tajima Y, et al. Comparative analysis of Helicobacter DNAs and biliary pathology in patients with and without hepatobiliary cancer. Carcinogenesis. 2002;23(11):1927–31.

    PubMed  CAS  Google Scholar 

  21. Leong RW, Sung JJ. Review article: Helicobacter species and hepatobiliary diseases. Aliment Pharmacol Ther. 2002;16(6):1037–45.

    PubMed  CAS  Google Scholar 

  22. Silva CP, Pereira-Lima JC, Oliveira AG, et al. Association of the presence of Helicobacter in gallbladder tissue with cholelithiasis and cholecystitis. J Clin Microbiol. 2003;41(12):5615–8.

    PubMed  Google Scholar 

  23. Mendez-Sanchez N, Pichardo R, Gonzalez J, et al. Lack of association between Helicobacter sp colonization and gallstone disease. J Clin Gastroenterol. 2001;32(2):138–41.

    PubMed  CAS  Google Scholar 

  24. Metz DC. Helicobacter colonization of the biliary tree: commensal, pathogen, or spurious finding? Am J Gastroenterol. 1998;93(10):1996–8.

    PubMed  CAS  Google Scholar 

  25. Germain M, Martin E, Gremillet C. Porcelain gallbladder and cancer (author’s transl). Sem Hop. 1979;55(35–36):1629–32.

    PubMed  CAS  Google Scholar 

  26. Stephen AE, Berger DL. Carcinoma in the porcelain gallbladder: a relationship revisited. Surgery. 2001;129(6):699–703.

    PubMed  CAS  Google Scholar 

  27. Towfigh S, McFadden DW, Cortina GR, et al. Porcelain gallbladder is not associated with gallbladder carcinoma. Am Surg. 2001;67(1):7–10.

    PubMed  CAS  Google Scholar 

  28. Sasatomi E, Tokunaga O, Miyazaki K. Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings. J Hepatobiliary Pancreat Surg. 2000;7(6):556–67.

    PubMed  CAS  Google Scholar 

  29. Kang CM, Kim KS, Choi JS, Lee WJ, Kim BR. Gallbladder carcinoma associated with anomalous pancreaticobiliary duct junction. Can J Gastroenterol. 2007;21(6):383–7.

    PubMed  Google Scholar 

  30. Chao TC, Wang CS, Jan YY, Chen HM, Chen MF. Carcinogenesis in the biliary system associated with APDJ. J Hepatobiliary Pancreat Surg. 1999;6(3):218–22.

    PubMed  CAS  Google Scholar 

  31. Carlos J, Roa JC. Preneoplastic lesions of a gallbladder from morphological and molecular points of view. In: Litchfield JE, editor. New research on precancerous conditions. New York: Nova Science Publishers; 2006.

    Google Scholar 

  32. Albores-Saavedra J, Alcantra-Vazquez A, Cruz-Ortiz H, Herrera-Goepfert R. The precursor lesions of invasive gallbladder carcinoma. Hyperplasia, atypical hyperplasia and carcinoma in situ. Cancer. 1980;45(5):919–27.

    PubMed  CAS  Google Scholar 

  33. Roa I, Araya JC, Wistuba I, et al. Epithelial lesions associated with gallbladder carcinoma. A methodical study of 32 cases. Rev Med Chil. 1993;121(1):21–9.

    PubMed  CAS  Google Scholar 

  34. Smok G, Cervilla K, Bosch H, Csendes A. Precancerous lesions of invasive carcinoma of the gallbladder. Rev Med Chil. 1986;114(10):954–8.

    PubMed  CAS  Google Scholar 

  35. Harbison J, Reynolds JV, Sheahan K, Gibney RG, Hyland JM. Evidence for the polyp-cancer sequence in gallbladder cancer. Ir Med J. 1997;90(3):98.

    PubMed  CAS  Google Scholar 

  36. Kozuka S, Tsubone N, Yasui A, Hachisuka K. Relation of adenoma to carcinoma in the gallbladder. Cancer. 1982;50(10):2226–34.

    PubMed  CAS  Google Scholar 

  37. Wistuba II, Miquel JF, Gazdar AF, Albores-Saavedra J. Gallbladder adenomas have molecular abnormalities different from those present in gallbladder carcinomas. Hum Pathol. 1999;30(1):21–5.

    PubMed  CAS  Google Scholar 

  38. Yokoyama N, Watanabe H, Ajioka Y, et al. Genetic alterations in gallbladder carcinoma: a review. Nippon Geka Gakkai Zasshi. 1998;99(10):687–95.

    PubMed  CAS  Google Scholar 

  39. Dowling GP, Kelly JK. The histogenesis of adenocarcinoma of the gallbladder. Cancer. 1986;58(8):1702–8.

    PubMed  CAS  Google Scholar 

  40. Duarte I, Llanos O, Domke H, Harz C, Valdivieso V. Metaplasia and precursor lesions of gallbladder carcinoma. Frequency, distribution, and probability of detection in routine histologic samples. Cancer. 1993;72(6):1878–84.

    PubMed  CAS  Google Scholar 

  41. Kozuka S, Kurashina M, Tsubone M, Hachisuka K, Yasui A. Significance of intestinal metaplasia for the evolution of cancer in the biliary tract. Cancer. 1984;54(10):2277–85.

    PubMed  CAS  Google Scholar 

  42. Laitio M. Histogenesis of epithelial neoplasms of human gallbladder I. Dysplasia. Pathol Res Pract. 1983;178(1):51–6.

    PubMed  CAS  Google Scholar 

  43. Yamagiwa H. Mucosal dysplasia of gallbladder: isolated and adjacent lesions to carcinoma. Jpn J Cancer Res. 1989;80(3):238–43.

    PubMed  CAS  Google Scholar 

  44. Albores-Saavedra J, Nadji M, Henson DE, Ziegels-Weissman J, Mones JM. Intestinal metaplasia of the gallbladder: a morphologic and immunocytochemical study. Hum Pathol. 1986;17(6):614–20.

    PubMed  CAS  Google Scholar 

  45. Yamagiwa H, Tomiyama H. Intestinal metaplasia-dysplasia-carcinoma sequence of the gallbladder. Acta Pathol Jpn. 1986;36(7):989–97.

    PubMed  CAS  Google Scholar 

  46. Yamamoto M, Nakajo S, Tahara E. Dysplasia of the gallbladder. Its histogenesis and correlation to gallbladder adenocarcinoma. Pathol Res Pract. 1989;185(4):454–60.

    PubMed  CAS  Google Scholar 

  47. Roa I, Araya JC, Villaseca M, et al. Preneoplastic lesions and gallbladder cancer: an estimate of the period required for progression. Gastroenterology. 1996;111(1):232–6.

    PubMed  CAS  Google Scholar 

  48. Aldridge MC, Bismuth H. Gallbladder cancer: the polyp-cancer sequence. Br J Surg. 1990;77(4):363–4.

    PubMed  CAS  Google Scholar 

  49. Sugiyama M, Xie XY, Atomi Y, Saito M. Differential diagnosis of small polypoid lesions of the gallbladder: the value of endoscopic ultrasonography. Ann Surg. 1999;229(4):498–504.

    PubMed  CAS  Google Scholar 

  50. Collett JA, Allan RB, Chisholm RJ, Wilson IR, Burt MJ, Chapman BA. Gallbladder polyps: prospective study. J Ultrasound Med. 1998;17(4):207–11.

    PubMed  CAS  Google Scholar 

  51. Nakajo S, Yamamoto M, Tahara E. Morphometrical analysis of gall-bladder adenoma and adenocarcinoma with reference to histogenesis and adenoma-carcinoma sequence. Virchows Arch A Pathol Anat Histopathol. 1990;417(1):49–56.

    PubMed  CAS  Google Scholar 

  52. Roa I, de Aretxabala X, Morgan R, et al. Clinicopathological features of gallbladder polyps and adenomas. Rev Med Chil. 2004;132(6):673–9.

    PubMed  Google Scholar 

  53. Shinkai H, Kimura W, Muto T. Surgical indications for small polypoid lesions of the gallbladder. Am J Surg. 1998;175(2):114–7.

    PubMed  CAS  Google Scholar 

  54. Terzi C, Sokmen S, Seckin S, Albayrak L, Ugurlu M. Polypoid lesions of the gallbladder: report of 100 cases with special reference to operative indications. Surgery. 2000;127(6):622–7.

    PubMed  CAS  Google Scholar 

  55. Chang HJ, Jee CD, Kim WH. Mutation and altered expression of beta-catenin during gallbladder carcinogenesis. Am J Surg Pathol. 2002;26(6):758–66.

    PubMed  Google Scholar 

  56. Bazoua G, Hamza N, Lazim T. Do we need histology for a normal-looking gallbladder? J Hepatobiliary Pancreat Surg. 2007;14(6):564–8.

    PubMed  Google Scholar 

  57. Frena A, Marinello P, La Guardia G, Martin F. Incidental gallbladder carcinoma. Chir Ital. 2007;59(2):185–90.

    PubMed  Google Scholar 

  58. Roa I, Araya JC, Wistuba I, de Aretxabala X. Gallbladder cancer: anatomic and anatomo-pathologic considerations. Rev Med Chil. 1990;118(5):572–9.

    PubMed  CAS  Google Scholar 

  59. Roa I, de Aretxabala X, Araya JC, et al. Morphological prognostic elements in gallbladder cancer. Rev Med Chil. 2002;130(4):387–95.

    PubMed  Google Scholar 

  60. Roa I, Araya JC, Villaseca M, Roa J, de Aretxabala X, Ibacache G. Gallbladder cancer in a high risk area: morphological features and spread patterns. Hepatogastroenterology. 1999;46(27):1540–6.

    PubMed  CAS  Google Scholar 

  61. Roa I, de Aretxabala X, Araya JC, et al. Findings in surgical reinterventions for cancer of the gallbladder in patients with and without preoperative chemotherapy and radiotherapy. Rev Med Chil. 2001;129(9):1013–20.

    PubMed  CAS  Google Scholar 

  62. de Aretxabala X, Losada H, Mora J, et al. Neoadjuvant chemoradiotherapy in gallbladder cancer. Rev Med Chil. 2004;132(1):51–7.

    PubMed  Google Scholar 

  63. de Aretxabala XA, Roa IS, Burgos LA, Araya JC, Villaseca MA, Silva JA. Curative resection in potentially resectable tumours of the gallbladder. Eur J Surg. 1997;163(6):419–26.

    PubMed  Google Scholar 

  64. Lada PE, Taborda B, Sanchez M, et al. Adenosquamous and squamous carcinoma of the gallbladder. Cir Esp. 2007;81(4):202–6.

    PubMed  Google Scholar 

  65. Mingoli A, Brachini G, Petroni R, et al. Squamous and adenosquamous cell carcinomas of the gallbladder. J Exp Clin Cancer Res. 2005;24(1):143–50.

    PubMed  CAS  Google Scholar 

  66. Anjaneyulu V, Shankar-Swarnalatha G, Rao SC. Carcinoid tumor of the gall bladder. Ann Diagn Pathol. 2007;11(2):113–6.

    PubMed  Google Scholar 

  67. Fujii H, Aotake T, Horiuchi T, Chiba Y, Imamura Y, Tanaka K. Small cell carcinoma of the gallbladder: a case report and review of 53 cases in the literature. Hepatogastroenterology. 2001;48(42):1588–93.

    PubMed  CAS  Google Scholar 

  68. Pavithran K, Doval DC, Vaid AK, Verma RN. Small cell carcinoma of the gall bladder: case report and review of literature. Trop Gastroenterol. 2001;22(3):170–1.

    PubMed  CAS  Google Scholar 

  69. Lazcano-Ponce EC, Miquel JF, Munoz N, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51(6):349–64.

    PubMed  CAS  Google Scholar 

  70. Roa J. Preneoplastic lesions. Precancerous. New York: Nova Scientific Publishers; 2007.

    Google Scholar 

  71. Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer. 2004;4(9):695–706.

    PubMed  CAS  Google Scholar 

  72. Kim SW, Her KH, Jang JY, Kim WH, Kim YT, Park YH. K-ras oncogene mutation in cancer and precancerous lesions of the gallbladder. J Surg Oncol. 2000;75(4):246–51.

    PubMed  CAS  Google Scholar 

  73. Watanabe H, Date K, Itoi T, et al. Histological and genetic changes in malignant transformation of gallbladder adenoma. Ann Oncol. 1999;10 Suppl 4:136–9.

    PubMed  Google Scholar 

  74. Roa I, Ibacache G, Melo A, et al. Subserous gallbladder carcinoma: expression of cadherine-catenine complex. Rev Med Chil. 2002;130(12):1349–57.

    PubMed  Google Scholar 

  75. Roa I, Melo A, Roa J, Araya J, Villaseca M, de Aretxabala X. P53 gene mutation in gallbladder cancer. Rev Med Chil. 2000;128(3):251–8.

    PubMed  CAS  Google Scholar 

  76. Wistuba II, Gazdar AF, Roa I, Albores-Saavedra J. p53 protein overexpression in gallbladder carcinoma and its precursor lesions: an immunohistochemical study. Hum Pathol. 1996;27(4):360–5.

    PubMed  CAS  Google Scholar 

  77. Yokoyama N, Hitomi J, Watanabe H, et al. Mutations of p53 in gallbladder carcinomas in high-incidence areas of Japan and Chile. Cancer Epidemiol Biomarkers Prev. 1998;7(4):297–301.

    PubMed  CAS  Google Scholar 

  78. Kim YT, Kim J, Jang YH, et al. Genetic alterations in gallbladder adenoma, dysplasia and carcinoma. Cancer Lett. 2001;169(1):59–68.

    PubMed  CAS  Google Scholar 

  79. Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 2002;11(4):995–1009.

    PubMed  Google Scholar 

  80. Shi YZ, Hui AM, Li X, Takayama T, Makuuchi M. Overexpression of retinoblastoma protein predicts decreased survival and correlates with loss of p16INK4 protein in gallbladder carcinomas. Clin Cancer Res. 2000;6(10):4096–100.

    PubMed  CAS  Google Scholar 

  81. Wistuba II, Sugio K, Hung J, et al. Allele-specific mutations involved in the pathogenesis of endemic gallbladder carcinoma in Chile. Cancer Res. 1995;55(12):2511–5.

    PubMed  CAS  Google Scholar 

  82. Itoi T, Watanabe H, Ajioka Y, et al. APC, K-ras codon 12 mutations and p53 gene expression in carcinoma and adenoma of the gall-bladder suggest two genetic pathways in gall-bladder carcinogenesis. Pathol Int. 1996;46(5):333–40.

    PubMed  CAS  Google Scholar 

  83. Yoshida T, Sugai T, Habano W, et al. Microsatellite instability in gallbladder carcinoma: two independent genetic pathways of gallbladder carcinogenesis. J Gastroenterol. 2000;35(10):768–74.

    PubMed  CAS  Google Scholar 

  84. Walsh AB, Bar-Sagi D. Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem. 2001;276(19):15609–15.

    PubMed  CAS  Google Scholar 

  85. Ajiki T, Fujimori T, Onoyama H, et al. K-ras gene mutation in gall bladder carcinomas and dysplasia. Gut. 1996;38(3):426–9.

    PubMed  CAS  Google Scholar 

  86. Masuhara S, Kasuya K, Aoki T, Yoshimatsu A, Tsuchida A, Koyanagi Y. Relation between K-ras codon 12 mutation and p53 protein overexpression in gallbladder cancer and biliary ductal epithelia in patients with pancreaticobiliary maljunction. J Hepatobiliary Pancreat Surg. 2000;7(2):198–205.

    PubMed  CAS  Google Scholar 

  87. Roa JC, Roa I, de Aretxabala X, Melo A, Faria G, Tapia O. K-ras gene mutation in gallbladder carcinoma. Rev Med Chil. 2004;132(8):955–60.

    PubMed  Google Scholar 

  88. Imai M, Hoshi T, Ogawa K. K-ras codon 12 mutations in biliary tract tumors detected by polymerase chain reaction denaturing gradient gel electrophoresis. Cancer. 1994;73(11):2727–33.

    PubMed  CAS  Google Scholar 

  89. Ito R, Tamura K, Ashida H, et al. Usefulness of K-ras gene mutation at codon 12 in bile for diagnosing biliary strictures. Int J Oncol. 1998;12(5):1019–23.

    PubMed  CAS  Google Scholar 

  90. Wistuba II, Albores-Saavedra J. Genetic abnormalities involved in the pathogenesis of gallbladder carcinoma. J Hepatobiliary Pancreat Surg. 1999;6(3):237–44.

    PubMed  CAS  Google Scholar 

  91. Hanada K, Tsuchida A, Iwao T, et al. Gene mutations of K-ras in gallbladder mucosae and gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct. Am J Gastroenterol. 1999;94(6):1638–42.

    PubMed  CAS  Google Scholar 

  92. Nakayama K, Konno M, Kanzaki A, et al. Allelotype analysis of gallbladder carcinoma associated with anomalous junction of pancreaticobiliary duct. Cancer Lett. 2001;166(2):135–41.

    PubMed  CAS  Google Scholar 

  93. Puhalla H, Wrba F, Kandioler D, et al. Expression of p21(Wafl/Cip1), p57(Kip2) and HER2/neu in patients with gallbladder cancer. Anticancer Res. 2007;27(3B):1679–84.

    PubMed  CAS  Google Scholar 

  94. Kiguchi K, Carbajal S, Chan K, et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res. 2001;61(19):6971–6.

    PubMed  CAS  Google Scholar 

  95. Chow NH, Huang SM, Chan SH, Mo LR, Hwang MH, Su WC. Significance of c-erbB-2 expression in normal and neoplastic epithelium of biliary tract. Anticancer Res. 1995;15(3):1055–9.

    PubMed  CAS  Google Scholar 

  96. Kawamoto T, Krishnamurthy S, Tarco E, et al. HER receptor family: novel candidate for targeted therapy for gallbladder and extrahepatic bile duct cancer. Gastrointest Cancer Res. 2007;1(6):221–7.

    PubMed  Google Scholar 

  97. Kim YW, Huh SH, Park YK, Yoon TY, Lee SM, Hong SH. Expression of the c-erb-B2 and p53 protein in gallbladder carcinomas. Oncol Rep. 2001;8(5):1127–32.

    PubMed  CAS  Google Scholar 

  98. Suzuki T, Takano Y, Kakita A, Okudaira M. An immunohistochemical and molecular biological study of c-erbB-2 amplification and prognostic relevance in gallbladder cancer. Pathol Res Pract. 1993;189(3):283–92.

    PubMed  CAS  Google Scholar 

  99. Eguchi N, Fujii K, Tsuchida A, Yamamoto S, Sasaki T, Kajiyama G, et al. Overexpression in human gallbladder carcinomas. Oncol Rep. 1999;6(1):93–6.

    PubMed  CAS  Google Scholar 

  100. Hui AM, Li X, Shi YZ, Takayama T, Torzilli G, Makuuchi M. Cyclin D1 overexpression is a critical event in gallbladder carcinogenesis and independently predicts decreased survival for patients with gallbladder carcinoma. Clin Cancer Res. 2000;6(11):4272–7.

    PubMed  CAS  Google Scholar 

  101. Billo P, Marchegiani C, Capella C, Sessa F. Expression of p53 in gallbladder carcinoma and in dysplastic and metaplastic lesions of the surrounding mucosa. Pathologica. 2000;92(4):249–56.

    PubMed  CAS  Google Scholar 

  102. Takada M, Horita Y, Okuda S, et al. Genetic analysis of xanthogranulomatous cholecystitis: precancerous lesion of gallbladder cancer? Hepatogastroenterology. 2002;49(46):935–7.

    PubMed  Google Scholar 

  103. Quan ZW, Wu K, Wang J, Shi W, Zhang Z, Merrell RC. Association of p53, p16, and vascular endothelial growth factor protein expressions with the prognosis and metastasis of gallbladder cancer. J Am Coll Surg. 2001;193(4):380–3.

    PubMed  CAS  Google Scholar 

  104. Tian Y, Ding RY, Zhi YH, Guo RX, Wu SD. Analysis of p53 and vascular endothelial growth factor expression in human gallbladder carcinoma for the determination of tumor vascularity. World J Gastroenterol. 2006;12(3):415–9.

    PubMed  CAS  Google Scholar 

  105. Roa I, Villaseca M, Araya J, et al. p53 tumour suppressor gene protein expression in early and advanced gallbladder carcinoma. Histopathology. 1997;31(3):226–30.

    PubMed  CAS  Google Scholar 

  106. Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84(4):587–97.

    PubMed  CAS  Google Scholar 

  107. Croce CM, Sozzi G, Huebner K. Role of FHIT in human cancer. J Clin Oncol. 1999;17(5):1618–24.

    PubMed  CAS  Google Scholar 

  108. Tanaka H, Shimada Y, Harada H, et al. Methylation of the 5′ CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res. 1998;58(15):3429–34.

    PubMed  CAS  Google Scholar 

  109. Zochbauer-Muller S, Fong KM, Maitra A, et al. 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001;61(9):3581–5.

    PubMed  CAS  Google Scholar 

  110. Siprashvili Z, Sozzi G, Barnes LD, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997;94(25):13771–6.

    PubMed  CAS  Google Scholar 

  111. Wistuba II, Tang M, Maitra A, et al. Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res. 2001;61(9):3795–800.

    PubMed  CAS  Google Scholar 

  112. Wistuba II, Ashfaq R, Maitra A, Alvarez H, Riquelme E, Gazdar AF. Fragile histidine triad gene abnormalities in the pathogenesis of gallbladder carcinoma. Am J Pathol. 2002;160(6):2073–9.

    PubMed  CAS  Google Scholar 

  113. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    PubMed  CAS  Google Scholar 

  114. Cahill DLC. Basic concepts in genetics. In: KK VB, editor. The genetic basis of human cancer. New York: McGraw-Hill; 2002. p. 129–30.

    Google Scholar 

  115. Boland CR. Hereditary nonpolyposis colorectal cancer (HNPCC). In: Bert Vogelstein KK, editor. New. New York: McGraw-Hill; 2002. p. 307–21.

    Google Scholar 

  116. Peltomaki P, Lothe RA, Aaltonen LA, et al. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res. 1993;53(24):5853–5.

    PubMed  CAS  Google Scholar 

  117. Ward R, Meagher A, Tomlinson I, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;48(6):821–9.

    PubMed  CAS  Google Scholar 

  118. Halling KC, Harper J, Moskaluk CA, et al. Origin of microsatellite instability in gastric cancer. Am J Pathol. 1999;155(1):205–11.

    PubMed  CAS  Google Scholar 

  119. Halling KC, French AJ, McDonnell SK, et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J Natl Cancer Inst. 1999;91(15):1295–303.

    PubMed  CAS  Google Scholar 

  120. Chiaravalli AM, Furlan D, Facco C, et al. Immunohistochemical pattern of hMSH2/hMLH1 in familial and sporadic colorectal, gastric, endometrial and ovarian carcinomas with instability in microsatellite sequences. Virchows Arch. 2001;438(1):39–48.

    PubMed  CAS  Google Scholar 

  121. Cangemi V, Fiori E, Picchi C, et al. Early gallbladder carcinoma: a single-center experience. Tumori. 2006;92(6):487–90.

    PubMed  Google Scholar 

  122. Woo DK, Lee WA, Kim YI, Kim WH. Microsatellite instability and alteration of E2F-4 gene in adenosquamous and squamous cell carcinomas of the stomach. Pathol Int. 2000;50(9):690–5.

    PubMed  CAS  Google Scholar 

  123. Chung YJ, Park SW, Song JM, et al. Evidence of genetic progression in human gastric carcinomas with microsatellite instability. Oncogene. 1997;15(14):1719–26.

    PubMed  CAS  Google Scholar 

  124. Saetta AA, Papanastasiou P, Michalopoulos NV, et al. Mutational analysis of BRAF in gallbladder carcinomas in association with K-ras and p53 mutations and microsatellite instability. Virchows Arch. 2004;445(2):179–82.

    PubMed  CAS  Google Scholar 

  125. Saetta AA, Gigelou F, Papanastasiou PI, et al. High-level microsatellite instability is not involved in gallbladder carcinogenesis. Exp Mol Pathol. 2006;80(1):67–71.

    PubMed  CAS  Google Scholar 

  126. Saetta A, Lazaris AC, Michalopoulos NV, Davaris PS. Genetic alterations involved in the development of gallbladder carcinomas from Greek patients. Hepatogastroenterology. 2001;48(41):1284–8.

    PubMed  CAS  Google Scholar 

  127. Saetta A, Lazaris AC, Davaris PS. Detection of ras oncogene point mutations and simultaneous proliferative fraction estimation in gallbladder cancer. Pathol Res Pract. 1996;192(6):532–40.

    PubMed  CAS  Google Scholar 

  128. Roa JC, Roa I, Correa P, et al. Microsatellite instability in preneoplastic and neoplastic lesions of the gallbladder. J Gastroenterol. 2005;40(1):79–86.

    PubMed  CAS  Google Scholar 

  129. Saetta AA. K-ras, p53 mutations, and microsatellite instability (MSI) in gallbladder cancer. J Surg Oncol. 2006;93(8):644–9.

    PubMed  CAS  Google Scholar 

  130. Yanagisawa N, Mikami T, Saegusa M, Okayasu I. More frequent beta-catenin exon 3 mutations in gallbladder adenomas than in carcinomas indicate different lineages. Cancer Res. 2001;61(1):19–22.

    PubMed  CAS  Google Scholar 

  131. Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392(6674):402–5.

    PubMed  CAS  Google Scholar 

  132. Jiang WG, Mansel RE. E-cadherin complex and its abnormalities in human breast cancer. Surg Oncol. 2000;9(4):151–71.

    PubMed  CAS  Google Scholar 

  133. Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. E-cadherin mediated adhesion system in cancer cells. Cancer. 1996;77(8 Suppl):1605–13.

    PubMed  CAS  Google Scholar 

  134. Dustin ML, Springer TA. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol. 1991;9:27–66.

    PubMed  CAS  Google Scholar 

  135. Schwaeble W, Kerlin M. Meyer zum Buschenfelde KH, Dippold W. De novo expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in pancreas cancer. Int J Cancer. 1993;53(2):328–33.

    PubMed  CAS  Google Scholar 

  136. Dippold W, Wittig B, Schwaeble W, Mayet W, Meyer zum Buschenfelde KH. Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells. Gut. 1993;34(11):1593–7.

    PubMed  CAS  Google Scholar 

  137. Nasu R, Mizuno M, Kiso T, et al. Immunohistochemical analysis of intercellular adhesion molecule-1 expression in human gastric adenoma and adenocarcinoma. Virchows Arch. 1997;430(4):279–83.

    PubMed  CAS  Google Scholar 

  138. Anastassiou G, Schilling H, Stang A, Djakovic S, Heiligenhaus A, Bornfeld N. Expression of the cell adhesion molecules ICAM-1, VCAM-1 and NCAM in uveal melanoma: a clinicopathological study. Oncology. 2000;58(1):83–8.

    PubMed  CAS  Google Scholar 

  139. Choi YL, Xuan YH, Shin YK, et al. An immunohistochemical study of the expression of adhesion molecules in gallbladder lesions. J Histochem Cytochem. 2004;52(5):591–601.

    PubMed  CAS  Google Scholar 

  140. Saito H, Tsujitani S, Katano K, Ikeguchi M, Maeta M, Kaibara N. Serum concentration of CD44 variant 6 and its relation to prognosis in patients with gastric carcinoma. Cancer. 1998;83(6):1094–101.

    PubMed  CAS  Google Scholar 

  141. Berner HS, Suo Z, Risberg B, Villman K, Karlsson MG, Nesland JM. Clinicopathological associations of CD44 mRNA and protein expression in primary breast carcinomas. Histopathology. 2003;42(6):546–54.

    PubMed  CAS  Google Scholar 

  142. Yamaguchi A, Zhang M, Goi T, et al. Expression of variant CD44 containing variant exon v8-10 in gallbladder cancer. Oncol Rep. 2000;7(3):541–4.

    PubMed  CAS  Google Scholar 

  143. Yanagisawa N, Mikami T, Mitomi H, Saegusa M, Koike M, Okayasu I. CD44 variant overexpression in gallbladder carcinoma associated with tumor dedifferentiation. Cancer. 2001;91(2):408–16.

    PubMed  CAS  Google Scholar 

  144. Hahn JH, Kim MK, Choi EY, et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol. 1997;159(5):2250–8.

    PubMed  CAS  Google Scholar 

  145. Bernard G, Breittmayer JP, de Matteis M, et al. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol. 1997;158(6):2543–50.

    PubMed  CAS  Google Scholar 

  146. Choi EY, Park WS, Jung KC, et al. Engagement of CD99 induces up-regulation of TCR and MHC class I and II molecules on the surface of human thymocytes. J Immunol. 1998;161(2):749–54.

    PubMed  CAS  Google Scholar 

  147. Asano T, Shoda J, Ueda T, et al. Expressions of cyclooxygenase-2 and prostaglandin E-receptors in carcinoma of the gallbladder: crucial role of arachidonate metabolism in tumor growth and progression. Clin Cancer Res. 2002;8(4):1157–67.

    PubMed  CAS  Google Scholar 

  148. Choi YL, Kim HS, Ahn G. Immunoexpression of inhibin alpha subunit, inhibin/activin betaA subunit and CD99 in ovarian tumors. Arch Pathol Lab Med. 2000;124(4):563–9.

    PubMed  CAS  Google Scholar 

  149. Dowaki S, Kijima H, Kashiwagi H, et al. CEA immunohistochemical localization is correlated with growth and metastasis of human gallbladder carcinoma. Int J Oncol. 2000;16(1):49–53.

    PubMed  CAS  Google Scholar 

  150. Kanthan R, Radhi JM, Kanthan SC. Gallbladder carcinomas: an immunoprognostic evaluation of P53, Bcl-2, CEA and alpha-fetoprotein. Can J Gastroenterol. 2000;14(3):181–4.

    PubMed  CAS  Google Scholar 

  151. Arck PC, Hertwig K, Hagen E, Hildebrandt M, Klapp BF. Pregnancy as a model of controlled invasion might be attributed to the ratio of CD3/CD8 to CD56. Am J Reprod Immunol. 2000;44(1):1–8.

    PubMed  CAS  Google Scholar 

  152. Roesler J, Srivatsan E, Moatamed F, Peters J, Livingston EH. Tumor suppressor activity of neural cell adhesion molecule in colon carcinoma. Am J Surg. 1997;174(3):251–7.

    PubMed  CAS  Google Scholar 

  153. Zoltowska A, Stepinski J, Lewko B, et al. Neural cell adhesion molecule in breast, colon and lung carcinomas. Arch Immunol Ther Exp (Warsz). 2001;49(2):171–4.

    CAS  Google Scholar 

  154. Perl AK, Dahl U, Wilgenbus P, Cremer H, Semb H, Christofori G. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic beta tumor cells. Nat Med. 1999;5(3):286–91.

    PubMed  CAS  Google Scholar 

  155. Riquelme E, Tang M, Baez S, et al. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett. 2007;250(1):100–6.

    PubMed  CAS  Google Scholar 

  156. Shukla VK, Gurubachan, Sharma D, Dixit VK, Usha. Diagnostic value of serum CA242, CA 19-9, CA 15-3 and CA 125 in patients with carcinoma of the gallbladder. Trop Gastroenterol. 2006;27(4):160–165.

    Google Scholar 

  157. Wu W, Pan C, Yu H, Gong H, Wang Y. Heparanase expression in gallbladder carcinoma and its correlation to prognosis. J Gastroenterol Hepatol. 2008;23(3):491–7.

    PubMed  Google Scholar 

  158. Pandey SN, Dixit M, Choudhuri G, Mittal B. Lipoprotein receptor associated protein (LRPAP1) insertion/deletion polymorphism: association with gallbladder cancer susceptibility. Int J Gastrointest Cancer. 2006;37(4):124–8.

    PubMed  Google Scholar 

  159. Pandey SN, Modi DR, Choudhuri G, Mittall B. Slow acetylator genotype of N-acetyl transferase2 (NAT2) is associated with increased susceptibility to gallbladder cancer: the cancer risk not modulated by gallstone disease. Cancer Biol Ther. 2007;6(1):91–6.

    PubMed  CAS  Google Scholar 

  160. Pandey SN, Srivastava A, Dixit M, Choudhuri G, Mittal B. Haplotype analysis of signal peptide (insertion/deletion) and XbaI polymorphisms of the APOB gene in gallbladder cancer. Liver Int. 2007;27(7):1008–15.

    PubMed  CAS  Google Scholar 

  161. Tsuchiya Y, Kiyohara C, Sato T, Nakamura K, Kimura A, Yamamoto M. Polymorphisms of cytochrome P450 1A1, glutathione S-transferase class mu, and tumour protein p53 genes and the risk of developing gallbladder cancer in Japanese. Clin Biochem. 2007;40(12):881–6.

    PubMed  CAS  Google Scholar 

  162. Pandey SN, Jain M, Nigam P, Choudhuri G, Mittal B. Genetic polymorphisms in GSTM1, GSTT1, GSTP1, GSTM3 and the susceptibility to gallbladder cancer in North India. Biomarkers. 2006;11(3):250–61.

    PubMed  CAS  Google Scholar 

  163. Jiao X, Huang J, Wu S, et al. hOGG1 Ser326Cys polymorphism and susceptibility to gallbladder cancer in a Chinese population. Int J Cancer. 2007;121(3):501–5.

    PubMed  CAS  Google Scholar 

  164. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171–83.

    PubMed  CAS  Google Scholar 

  165. Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A. 2003;100(4):1838–43.

    PubMed  CAS  Google Scholar 

  166. Tang M, Baez S, Pruyas M, et al. Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res. 2004;10(3):1041–6.

    PubMed  CAS  Google Scholar 

  167. Massa PT, Wu C. Increased inducible activation of NF-kappaB and responsive genes in astrocytes deficient in the protein tyrosine phosphatase SHP-1. J Interferon Cytokine Res. 1998;18(7):499–507.

    PubMed  CAS  Google Scholar 

  168. Rao DN, Cederbaum AI. Production of nitric oxide and other iron-containing metabolites during the reductive metabolism of nitroprusside by microsomes and by thiols. Arch Biochem Biophys. 1995;321(2):363–71.

    PubMed  CAS  Google Scholar 

  169. Kim YM, Son K, Hong SJ, et al. Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol Med. 1998;4(3):179–90.

    PubMed  CAS  Google Scholar 

  170. Jadeski LC, Chakraborty C, Lala PK. Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Can J Physiol Pharmacol. 2002;80(2):125–35.

    PubMed  CAS  Google Scholar 

  171. Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305(2):253–64.

    PubMed  CAS  Google Scholar 

  172. Jenkins DC, Charles IG, Thomsen LL, et al. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995;92(10):4392–6.

    PubMed  CAS  Google Scholar 

  173. Zhang M, Pan JW, Ren TR, Zhu YF, Han YJ, Kuhnel W. Correlated expression of inducible nitric oxide synthase and P53, Bax in benign and malignant diseased gallbladder. Ann Anat. 2003;185(6):549–54.

    PubMed  CAS  Google Scholar 

  174. Garavito RM, Mulichak AM. The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct. 2003;32:183–206.

    PubMed  CAS  Google Scholar 

  175. Legan M, Luzar B, Marolt VF, Cor A. Expression of cyclooxygenase-2 is associated with p53 accumulation in premalignant and malignant gallbladder lesions. World J Gastroenterol. 2006;12(21):3425–9.

    PubMed  CAS  Google Scholar 

  176. Zhi YH, Liu RS, Song MM, et al. Cyclooxygenase-2 promotes angiogenesis by increasing vascular endothelial growth factor and predicts prognosis in gallbladder carcinoma. World J Gastroenterol. 2005;11(24):3724–8.

    PubMed  CAS  Google Scholar 

  177. Han JA, Kim JI, Ongusaha PP, et al. P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J. 2002;21(21):5635–44.

    PubMed  CAS  Google Scholar 

  178. Swamy MV, Herzog CR, Rao CV. Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res. 2003;63(17):5239–42.

    PubMed  CAS  Google Scholar 

  179. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79(2):185–8.

    PubMed  CAS  Google Scholar 

  180. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13(1):18–32.

    PubMed  CAS  Google Scholar 

  181. Pepper MS, Wasi S, Ferrara N, Orci L, Montesano R. In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res. 1994;210(2):298–305.

    PubMed  CAS  Google Scholar 

  182. Blackburn EH. The telomere and telomerase: nucleic acid-protein complexes acting in a telomere homeostasis system. A review. Biochemistry (Mosc). 1997;62(11):1196–201.

    CAS  Google Scholar 

  183. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    PubMed  CAS  Google Scholar 

  184. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256(2–6):271–82.

    PubMed  CAS  Google Scholar 

  185. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14(17):4240–8.

    PubMed  CAS  Google Scholar 

  186. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277(5328):955–9.

    PubMed  CAS  Google Scholar 

  187. Luzar B, Poljak M, Cor A, Klopcic U, Ferlan-Marolt V. Expression of human telomerase catalytic protein in gallbladder carcinogenesis. J Clin Pathol. 2005;58(8):820–5.

    PubMed  CAS  Google Scholar 

  188. Itoi T, Shinohara Y, Takeda K, et al. Detection of telomerase activity in biopsy specimens for diagnosis of biliary tract cancers. Gastrointest Endosc. 2000;52(3):380–6.

    PubMed  CAS  Google Scholar 

  189. Niiyama H, Mizumoto K, Kusumoto M, et al. Activation of telomerase and its diagnostic application in biopsy specimens from biliary tract neoplasms. Cancer. 1999;85(10):2138–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Volkan Adsay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roa, J.C., Katabi, N., Adsay, N.V. (2011). Neoplasms of the Gallbladder. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_61

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics