Kupffer Cells

Part of the Molecular Pathology Library book series (MPLB, volume 5)


Kupffer cells, the resident macrophages in the liver, constitute the largest population of stationary macrophages in any organ. They constitute about 30–35% of the nonparenchymal cell volume, and reside in the hepatic sinusoids adhering to the specialized endothelial cells. Kupffer cells are formed by differentiation of mature monocytes derived from bone marrow stem cells. Apart from phagocytosis and destruction of bacteria, viruses, and products derived thereof, Kupffer cells clear a variety of noxious substances dumped in the portal blood by visceral organs. They produce a variety of chemotactic, inflammatory, growth-modulatory, and vasoactive molecules including TNF-α, IL-6, IFN-α and IFN-β, IL-1β, platelet-activating factor, eicosanoids, TGF-α, TGF-β, carbon monoxide, and nitric oxide. Upon reacting with bacterial lipopolysaccharides or following phagocytosis, Kupffer cells also produce reactive oxygen species (ROS) that cause injury to the parenchymal cells. Kupffer cells express antigen-presenting (MHC-I and MHC-II) and costimulatory (CD80, CD86) molecules, as well as immunosuppressive cytokines IL-10 and TGFβ. With these properties, Kupffer cells play important roles in liver regeneration, reperfusion injury, alcoholic liver disease, and nonalcoholic steatohepatitis, as well as innate and adaptive immunological functions of the liver.


Hepatocyte Growth Factor Kupffer Cell Liver Regeneration Alcoholic Liver Disease Small Intestinal Bacterial Overgrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Szymańska R, Schmidt-Pospuła M. [Studies of liver’s reticuloendothelial cells by Tadeusz Browicz and Karl Kupffer. A historical outline]. Arch Hist Med (Warsz). 1979;42:331–6.Google Scholar
  2. 2.
    Wisse E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J Ultrastruct Res. 1974;46:393–426.PubMedCrossRefGoogle Scholar
  3. 3.
    Wisse E. Kupffer cell reactions in rat liver under various conditions as observed in the electron microscope. J Ultrastruct Res. 1974;46:499–520.PubMedCrossRefGoogle Scholar
  4. 4.
    Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72:441–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Freudenberg N, Schalk J, Galanos C, Katschinski T, Datz O, Pein U, et al. Identification and percentage frequency of isolated non-parenchymal liver cells (NPLC) in the mouse. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;57:109–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Golde DW, Gasson JC. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation. Basic principles and clinical correlates. New York: Raven; Cytokines: Myeloid growth factors 1988. p. 253–64.Google Scholar
  7. 7.
    van Furth R. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation. Basic principles and clinical correlates. New York: Raven; Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation 1988. p. 281–95.Google Scholar
  8. 8.
    Van Rooijen N, Kors N, vd Ende M, Dijkstra CD. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 1990;260:215–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210:153–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993;81(6):1607–13.PubMedGoogle Scholar
  11. 11.
    Lapis K, Zalatnai A, Timár F, Thorgeirsson UP. Quantitative evaluation of lysozyme- and CD68-positive Kupffer cells in diethylnitrosamine-induced hepatocellular carcinomas in monkeys. Carcinogenesis. 1995;16:3083–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Dijkstra CD, Döpp EA, Joling P, Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985;54:589–99.PubMedGoogle Scholar
  13. 13.
    Schaller E, Macfarlane AJ, Rupec RA, Gordon S, McKnight AJ, Pfeffer K. Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol. 2002;22:8035–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Sleyster EC, Knook DL. Relation between localization and function of rat liver Kupffer cells. Lab Invest. 1982;47:484–90.PubMedGoogle Scholar
  15. 15.
    Bouwens L, Baekeland M, De Zanger R, Wisse E. Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology. 1986;6:718–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoedemakers RM, Morselt HW, Scherphof GL, Daemen T. Heterogeneity in secretory response of rat liver macrophages of different size. Liver. 1995;15:313–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Paradis K, Blazar B, Sharp HL. Rapid repopulation and maturation of Kupffer cells from the bone marrow in a murine bone marrow transplant model. In: Wisse E, Knook DL, editors. Cells of the hepatic sinusoid, vol. 2. Rijswijk: Kupffer Cell Foundation; 1989. p. 410–12.Google Scholar
  18. 18.
    Freudenberg N, Galanos C, Datz O, Hämmerling G, Katschinski TH, Schalk J, et al. Mechanism of replacement of non-parenchymal liver cells (NPLC) in murine radiation chimeras. Virchows Arch A Pathol Anat Histopathol. 1989;415:203–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Yamamoto T, Naito M, Moriyama H, Umezu H, Matsuo H, Kiwada H, et al. Repopulation of murine Kupffer cells after intravenous administration of liposome – encapsulated dichlormethylene diphosphonate. Am J Pathol. 1996;149:1271–86.PubMedGoogle Scholar
  20. 20.
    Naito M, Takahashi K. The role of Kupffer cells in glucan induced granuloma formation in the liver of mice depleted of blood monocytes by administration of strontium-89. Lab Invest. 1991;64:664–74.PubMedGoogle Scholar
  21. 21.
    Steinhoff G, Behrend M, Sorg C, Wonigeit K, Pichlmayr R. Sequential analysis of macrophage tissue differentiation and Kupffer cell exchange after human liver transplantation. In: Wisse E, Knook DL, editors. Cells of the Hepatic Sinusoid, vol. 2. Rijswijk: Kupffer Cell Foundation; 1989. p. 406–9.Google Scholar
  22. 22.
    Smedsrod B, Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol. 1985;38:213–30.PubMedGoogle Scholar
  23. 23.
    Knook DL, Sleyster EC. Separation of Kupffer and endothelial cells of the rat liver by centrifugal elutriation. Exp Cell Res. 1976;99:444–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Polliack A, Gamliel H, Hershko C, Knook DL, Sleyster EC. Surface morphology and ultrastructure of isolated hepatic Kupffer and endothelial cells. Biomedicine. 1978;29:268–72.PubMedGoogle Scholar
  25. 25.
    Uemura T, Gandhi CR. Inhibition of DNA synthesis in cultured hepatocytes by endotoxin-conditioned medium of activated stellate cells is transforming growth factor-b- and nitric oxide- independent. Br J Pharmacol. 2001;133:1125–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Anselmi K, Nalesnik M, Watkins SC, Beer-Stolz D, Gandhi CR. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: exacerbation by caspase and serine protease inhibition. J Hepatology. 2007;47:103–13.CrossRefGoogle Scholar
  27. 27.
    Do H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem. 1999;274:19587–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res. 2009;69:5514–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Dieter P, Schulze-Specking A, Decker K. Differential inhibition of prostaglandin and superoxide production by dexamethasone in primary cultures of rat Kupffer cells. Eur J Biochem. 1986;159:451–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem. 1990;192:245–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Vomel T, Hager K, Platt D. Clearance of heterologous, homologous and damaged homologous erythrocytes by the isolated perfused rat liver. Vet Immunol Immunopathol. 1988;18:361–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Terpstra V, van Berkel TJC. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood. 2000;95:2157–63.PubMedGoogle Scholar
  33. 33.
    Willekens FL, Roerdinkholder-Stoelwinder B, Groenen-Döpp YA, Bos HJ, Bosman GJ, van den Bos AG, et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood. 2003;101:747–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Döpp YA, van den Bos AG, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005;105:2141–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409:198–201.PubMedCrossRefGoogle Scholar
  36. 36.
    Kappas A. A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics. 2004;113:119–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Stocker R, Yamamoto Y, McDonagh A, Glazer A, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Suematsu M, Ishimura Y. The heme oxygenase – carbon monoxide system: a regulator of hepatobiliary functions. Hepatology. 2000;31:3–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Wagener FA, Volk HD, Willis D. Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev. 2003;26:551–71.CrossRefGoogle Scholar
  40. 40.
    Tomiyama K, Ikeda A, Ueki S, Nakao A, Stolz DB, Koike Y, et al. Inhibition of Kupffer cell-mediated early proinflammatory response with carbon monoxide in transplant-induced hepatic ischemia/reperfusion injury in rats. Hepatology. 2008;48:1608–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.PubMedCrossRefGoogle Scholar
  42. 42.
    Philippidis P, Mason JC, Evans BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: anti-inflammatory monocyte–macrophage response in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Mook OR, Van Marle J, Vreeling-Sindelarova H, Jonges R, Frederiks WM, Van Norden CJ. Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology. 2003;38:295–304.PubMedCrossRefGoogle Scholar
  44. 44.
    Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology. 1996;23:1224–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Schurman B, Heuff G, Beelen RH, Meyer S. Enhanced human Kupffer cell-mediated cytotoxicity after activation of the effector cells and modulation of the target cells by interferon-gamma: a mechanistic study at the cellular level. Cell Immunol. 1995;165:141–7.CrossRefGoogle Scholar
  46. 46.
    Heuff G, van der Ende MB, Boutkan H, Prevoo W, Bayon LG, Fleuren GJ, et al. Macrophage populations in different stages of induced hepatic metastases in rats: an immunohistochemical analysis. Scand J Immunol. 1993;38:10–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Karpoff HM, Jarnagin W, Delman K, Fong Y. Regional muramyl tripeptide phosphatidylethanolamine administration enhances hepatic immune function and tumor surveillance. Surgery. 2000;128:213–8.PubMedCrossRefGoogle Scholar
  48. 48.
    van der Bij GJ, Oosterling SJ, Meijer S, Beelen RHJ, van Egmond M. Therapeutic potential of Kupffer cells in prevention of liver metastases outgrowth. Immunobiology. 2005;210:259–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Functions of anaphylatoxin C5a in rat liver: direct and indirect actions on nonparenchymal and parenchymal cells. Int Immunopharmacol. 2001;1:469–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the b-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996;156:1235–46.PubMedGoogle Scholar
  51. 51.
    Akerman P, Cote P, Yang SQ, McClain C, Nelson S, Bagby GJ, et al. Antibodies to tumor necrosis factor inhibit liver regeneration after partial hepatectomy. Am J Physiol. 1992;263:G579–85.PubMedGoogle Scholar
  52. 52.
    Su GL. Lipopylysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol. 2002;283:G256–65.PubMedGoogle Scholar
  53. 53.
    Schumann RR. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol. 1992;143:11–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Heumann D, Gallay P, Barras C, Zaech P, Ulevitch RJ, Tobias PS, et al. Control of lipopolysaccharide (LPS) binding and LPS-induced tumor necrosis factor secretion in human peripheral blood monocytes. J Immunol. 1992;148:3505–12.PubMedGoogle Scholar
  56. 56.
    Tobias PS, Soldau K, Kline L, Lee JD, Kato K, Martin TP, et al. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol. 1993;150:3011–21.PubMedGoogle Scholar
  57. 57.
    Takai N, Kataoka M, Higuchi Y, Matsuura K, Yamamoto S. Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol. 1997;61:736–44.PubMedGoogle Scholar
  58. 58.
    Matsuura K, Ishida T, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S. Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J Exp Med. 1994;179:1671–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Weinstein SL, Gold MR, DeFranco AL. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci USA. 1991;88:4148–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Dong Z, Qi X, Xie K, Fidler IJ. Protein tyrosine kinase inhibitors decrease induction of nitric oxide synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J Immunol. 1993;151:2717–24.PubMedGoogle Scholar
  61. 61.
    Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994;265:808–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Shinji H, Akagawa KS, Yoshida T. LPS induces selective translocation of protein kinase C-beta in LPS-responsive mouse macrophages, but not in LPS-nonresponsive mouse macrophages. J Immunol. 1994;153:5760–71.PubMedGoogle Scholar
  63. 63.
    Hambleton J, Weinstein SL, Lem L, DeFranco AL. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA. 1996;93:2774–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156:4457–65.PubMedGoogle Scholar
  65. 65.
    Mühlbauer M, Weiss TS, Thasler WE, Gelbmann CM, Schnabl B, Schölmerich J, et al. LPS-mediated NFkappaB activation varies between activated human hepatic stellate cells from different donors. Biochem Biophys Res Commun. 2004;325:191–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immun. 2001;2:675–80.CrossRefGoogle Scholar
  67. 67.
    Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189:1777–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3:667–72.PubMedGoogle Scholar
  70. 70.
    Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 2003;4:1144–50.PubMedCrossRefGoogle Scholar
  73. 73.
    Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998;188:2091–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, et al. Toll-like receptor-2 mediated lipoplysaccharide-induced cellular signaling. Nature. 1998;395:284–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA, et al. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol. 2007;210:667–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Ojaniemi M, Liljeroos M, Harju K, Sormunen R, Vuolteenaho R, Hallman M. TLR-2 is upregulated and mobilized to the hepatocyte plasma membrane in the space of Disse and to the Kupffer cells TLR-4 dependently during acute endotoxemia in mice. Immunol Lett. 2006;102:158–68.PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang JX, Zhang Y, Ji SH, Zhu P, Wang ZG. Kinetics of mitogen-activated protein kinase family in lipopolysaccharide-stimulated mouse Kupffer cells and their role in cytokine production. Shock. 2002;18:336–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-a production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol. 2002;282:G6–15.PubMedGoogle Scholar
  80. 80.
    Buxton DB, Fisher RA, Briseno DL, Hanahan DJ, Olson MS. Glycogenolytic and haemodynamic responses to heat-aggregated immunoglobulin G and prostaglandin E2 in the perfused rat liver. Biochem J. 1987;243:493–8.PubMedGoogle Scholar
  81. 81.
    Kuiper J, De Rijke YB, Zijlstra FJ, Van Waas MP, Van Berkel TJ. The induction of glycogenolysis in the perfused liver by platelet activating factor is mediated by prostaglandin D2 from Kupffer cells. Biochem Biophys Res Commun. 1988;157:1288–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Kuiper J, Zijlstra FJ, Kamps JA, Van Berkel TJ. Cellular communication inside the liver. Binding, conversion and metabolic effect of prostaglandin D2 on parenchymal liver cells. Biochem J. 1989;262:195–201.PubMedGoogle Scholar
  83. 83.
    Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993;292:617–29.PubMedGoogle Scholar
  84. 84.
    Fisher RA, Robertson SM, Olson MS. Stimulation of glycogenolysis and vasoconstriction in the perfused rat liver by the thromboxane A2 analogue U-46619. J Biol Chem. 1987;262:4631–8.PubMedGoogle Scholar
  85. 85.
    Haussinger D, Stehle T, Gerok W. Effects of leukotrienes and the thromboxane A2 analogue U-46619 in isolated perfused rat liver. Metabolic, hemodynamic and ion-flux responses. Biol Chem Hoppe Seyler. 1988;369:97–107.PubMedCrossRefGoogle Scholar
  86. 86.
    Arii S, Monden K, Adachi Y, Zhang W, Higashitsuji H, Furutani M, et al. Pathogenic role of Kupffer cell activation in the reperfusion injury of cold-preserved liver. Transplantation. 1994;58:1072–7.PubMedGoogle Scholar
  87. 87.
    Karck U, Peters T, Decker K. The release of tumor necrosis factor from endotoxin-stimulated rat Kupffer cells is regulated by prostaglandin E2 and dexamethasone. J Hepatol. 1988;7:352–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Peters T, Karck U, Decker K. Interdependence of tumor necrosis factor, prostaglandin E2, and protein synthesis in lipopolysaccharide-exposed rat Kupffer cells. Eur J Biochem. 1990;191:583–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Buxton DB, Hanahan DJ, Olson MS. Stimulation of glycogenolysis and platelet-activating factor production by heat-aggregated immunoglobulin G in the perfused rat liver. J Biol Chem. 1984;259:13758–61.PubMedGoogle Scholar
  90. 90.
    Chao W, Siafaka-Kapadai A, Hanahan DJ, Olson MS. Metabolism of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and lyso-PAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) by cultured rat Kupffer cells. Biochem J. 1989;261:77–81.PubMedGoogle Scholar
  91. 91.
    Chao W, Siafaka-Kapadai A, Olson MS, Hanahan DJ. Biosynthesis of platelet-activating factor by cultured rat Kupffer cells stimulated with calcium ionophore A23187. Biochem J. 1989;257:823–9.PubMedGoogle Scholar
  92. 92.
    Anderson BO, Bensard DD, Harken AH. The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg Gynecol Obstet. 1991;172:415–24.PubMedGoogle Scholar
  93. 93.
    Gandhi CR, Olson MS. PAF effects on transmembrane signaling pathways in rat Kupffer cells. Lipids. 1991;26:1038–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Gandhi CR, Stephenson K, Olson MS. A comparative account of endothelin- and platelet-activating factor-mediated signal transduction and prostaglandin synthesis in rat Kupffer cells. Biochem J. 1992;281:485–92.PubMedGoogle Scholar
  95. 95.
    Gandhi CR, Debuysere MS, Olson MS. Platelet-activating factor-mediated synthesis of prostaglandins in rat Kupffer cells. Biochim Biophys Acta. 1992;1136:68–74.PubMedCrossRefGoogle Scholar
  96. 96.
    Gandhi CR, Kuddus RH, Nemoto EM, Murase N. Endotoxin treatment causes up-regulation of endothelin system in the liver: amelioration of increased portal resistance by endothelin receptor antagonism. J Gastroenterol Hepatol. 2001;6:61–9.CrossRefGoogle Scholar
  97. 97.
    Gandhi CR, Uemura T, Kuddus RH. Endotoxin causes up-regulation of endothelin receptors in cultured hepatic stellate cells via nitric oxide-dependent and independent mechanisms. Br J Pharmacol. 2000;131:319–27.PubMedCrossRefGoogle Scholar
  98. 98.
    Eakes AT, Olson MS. Regulation of endothelin synthesis in hepatic endothelial cells. Am J Physiol. 1998;274:G1068–76.PubMedGoogle Scholar
  99. 99.
    Mustafa SB, Gandhi CR, Harvey SAK, Olson MS. Endothelin stimulates platelet activating factor synthesis by cultured rat Kupffer cells. Hepatology. 1995;21:545–53.PubMedGoogle Scholar
  100. 100.
    Shukla SD, Buxton DB, Olson MS, Hanahan DJ. Acetylglyceryl ether phosphorylcholine. A potent activator of hepatic phosphoinositide metabolism and glycogenolysis. J Biol Chem. 1983;258:10212–4.PubMedGoogle Scholar
  101. 101.
    Buxton DB, Shukla SD, Hanahan DJ, Olson MS. Stimulation of hepatic glycogenolysis by acetylglyceryl ether phosphorylcholine. J Biol Chem. 1984;259:1468–71.PubMedGoogle Scholar
  102. 102.
    Gandhi CR, Stephenson K, Olson MS. Endothelin: a potent peptide agonist in the liver. J Biol Chem. 1990;265:17432–5.PubMedGoogle Scholar
  103. 103.
    Yang Y, Nemoto E, Harvey SAK, Subbotin VM, Gandhi CR. CCl4-induced cirrhosis in rats increases hepatic expression of platelet-activating factor and its receptor- Implications in chronic liver injury. Gut. 2004;53:877–83.PubMedCrossRefGoogle Scholar
  104. 104.
    Sakaguchi T, Nakamura S, Suzuki S, Oda T, Ichiyama A, Baba S, et al. Participation of platelet-activating factor in the lipopolysaccharide-induced liver injury in partially hepatectomized rats. Hepatology. 1999;30:959–67.PubMedCrossRefGoogle Scholar
  105. 105.
    Mutoh H, Ishi S, Izumi T, Kato S, Shimizu T. Platelet-activating factor receptor (PAF) positively auto-regulates the expression of human PAF receptor transcript 1 (leukocyte-type) through NF-kB. Biochem Biophys Res Commun. 1994;205:1137–42.PubMedCrossRefGoogle Scholar
  106. 106.
    De Plaen IG, Tan XD, Chang H, Qu XW, Liu QP, Hsueh W. Intestinal NF-kappaB is activated, mainly as p50 homodimers, by platelet activating factor. Biochim Biophys Acta. 1998;1392:185–92.PubMedCrossRefGoogle Scholar
  107. 107.
    Huang L, Tan X, Crawford SE, Hsueh W. Platelet-activating factor and endotoxin induced tumor necrosis factor gene expression in rat intestine and liver. Immunology. 1994;83:65–9.PubMedGoogle Scholar
  108. 108.
    Zhang F, Decker K. Platelet-activating factor antagonists suppress the generation of tumor necrosis factor-alpha and superoxide induced by lipopolysaccharide or phorbol ester in rat liver macrophages. Eur Cytokine Netw. 1994;5:311–7.PubMedGoogle Scholar
  109. 109.
    Mustafa SB, Howard KM, Olson MS. Platelet-activating factor augments lipopolysaccharide-induced nitric oxide formation by rat Kupffer cells. Hepatology. 1996;23:1622–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Jaeschke H, Farhood A, Smith CW. Contribution of complement-stimulated hepatic macrophages and neutrophils to endotoxin-induced liver injury in rats. Hepatology. 1994;19:973–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Ember JA, Hugli TE. Complement factors and their receptors. Immunopharmacology. 1997;38:3–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Sehic E, Li S, Ungar AL, Blatteis CM. Complement reduction impairs the febrile response of guinea pigs to endotoxin. Am J Physiol. 1998;274:R1594–603.PubMedGoogle Scholar
  113. 113.
    Perlik V, Li Z, Goorha S, Ballou LR, Blatteis CM. LPS-activated complement, not LPS per se, triggers the early release of PGE2 by Kupffer cells. Am J Physiol Regul Integr Comp Physiol. 2005;289:R332–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Yu BP. Cellular defenses against damage from reactive oxygen species. Pharmacol Rev. 1994;74:139–62.Google Scholar
  115. 115.
    Klebanoff SL. In: Gallin JI, Goldstein IM, Snyderman I, editors. Inflammation: basic princliples and clinical correlates. New York: Raven; 1988. p. 391–444.Google Scholar
  116. 116.
    Pietrangelo A. Metals, oxidative stress and hepatic fibrosis. Sem Liver Dis. 1996;16:13–30.CrossRefGoogle Scholar
  117. 117.
    Li P-F, Dietz R, von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation. 1997;96:3602–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Li P-F, Dietz R, von Harsdorf R. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-b1 in cardiac fibroblasts. FEBS Lett. 1999;448:206–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303:468–75.PubMedCrossRefGoogle Scholar
  120. 120.
    Rauen U, Reuters I, Fuchs A, de Groot H. Oxygen-free radical-mediated injury to cultured rat hepatocytes during cold incubation in preservation solutions. Hepatology. 1997;26:351–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Rauen U, Polzar B, Stephan H, Mannherz HG, De Groot D. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J. 1999;13:155–68.PubMedGoogle Scholar
  122. 122.
    Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213:286–300.PubMedCrossRefGoogle Scholar
  125. 125.
    Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation. 2008;15:37–47.PubMedCrossRefGoogle Scholar
  126. 126.
    Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology. 2003;124:692–700.PubMedCrossRefGoogle Scholar
  127. 127.
    Stanley M. Tumor necrosis factor-alpha increases hepatic DNA and RNA and hepatocyte mitosis. Biochem Int. 1990;22:405–10.PubMedCrossRefGoogle Scholar
  128. 128.
    Feingold KR, Soued M, Grunfeld C. Tumor necrosis factor stimulates DNA synthesis in the liver of intact rats. Biochem Biophys Res Commun. 1988;153:576–82.PubMedCrossRefGoogle Scholar
  129. 129.
    Diehl AM, Rai RM. Liver regeneration 3: regulation of signal transduction during liver regeneration. FASEB J. 1996;10:215–27.PubMedGoogle Scholar
  130. 130.
    Diehl AM, Yin M, Fleckenstein J, Yang SQ, Lin HZ, Brenner DA, et al. Tumor necrosis factor-a induces c-jun during the regenerative response to liver injury. Am J Physiol Gastroint Liver Physiol. 1994;267:G552–61.Google Scholar
  131. 131.
    Bruccoleri A, Gallucci R, Germolec DR, Blackshear P, Simeonova P, Thurman RG, et al. Induction of early-immediate genes by tumor necrosis factor alpha contribute to liver repair following chemical-induced hepatotoxicity. Hepatology. 1997;25:133–41.PubMedCrossRefGoogle Scholar
  132. 132.
    Webber EM, Bruix J, Pierce RH, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology. 1998;28:1226–34.PubMedCrossRefGoogle Scholar
  133. 133.
    Akerman PA, Cote PM, Yang SQ, McClain C, Nelson S, Bagby G, et al. Long term ethanol consumption alters the hepatic response to the regenerative effects of tumor necrosis factor-a. Hepatology. 1993;17:1066–73.PubMedCrossRefGoogle Scholar
  134. 134.
    Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA. Tumor necrosis factor-a stimulates AP-1 activity through prolonged activation of the c-jun kinase. J Biol Chem. 1994;269:26396–401.PubMedGoogle Scholar
  135. 135.
    Diehl AM, Michaelson P, Yang SQ. Selective induction of CCAAT/enhancer binding protein isoforms occurs during rat liver development. Gastroenterology. 1994;106:1625–37.PubMedGoogle Scholar
  136. 136.
    Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274:1379–83.PubMedCrossRefGoogle Scholar
  137. 137.
    Gauldie J, Richards C, Baumann H. IL6 and the acute phase reaction. Res Immunol. 1992;143:755–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA. 1997;94:1441–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Rai RM, Yang SQ, McClain C, Karp CL, Klein AS, Diehl AM. Kupffer cell depletion by gadolinium chloride enhances liver regeneration after partial hepatectomy in rats. Am J Physiol. 1996;270:G909–18.PubMedGoogle Scholar
  140. 140.
    Thirunavukkarasu C, Uemura T, Wang LF, Watkins SC, Gandhi CR. Normal rat hepatic stellate cells respond to endotoxin in LBP-independent manner to produce inhibitor(s) of DNA synthesis in hepatocytes. J Cell Physiol. 2005;204:654–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Thirunavukkarasu C, Watkins SC, Gandhi CR. Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology. 2006;44:389–98.PubMedCrossRefGoogle Scholar
  142. 142.
    Tian Y, Jochum W, Georgiev P, Moritz W, Graf R, Clavien PA. Kupffer cell-dependent TNF-alpha signaling mediates injury in the arterialized small-for-size liver transplantation in the mouse. Proc Natl Acad Sci USA. 2006;103:4598–603.PubMedCrossRefGoogle Scholar
  143. 143.
    Suzuki S, Inaba K, Konno H. Ischemic preconditioning in hepatic ischemia and reperfusion. Curr Opin Organ Transplant. 2008;13:142–7.PubMedCrossRefGoogle Scholar
  144. 144.
    de Rougemont O, Lehmann K, Clavien PA. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl. 2009;15:1172–82.PubMedCrossRefGoogle Scholar
  145. 145.
    Montalvo-Jave EE, Piña E, Montalvo-Arenas C, Urrutia R, Benavente-Chenhalls L, Peña-Sanchez J, et al. Role of ischemic preconditioning in liver surgery and hepatic transplantation. J Gastrointest Surg. 2009;13:2074–83.PubMedCrossRefGoogle Scholar
  146. 146.
    Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol. 1991;260:G355–62.PubMedGoogle Scholar
  147. 147.
    Shiratori Y, Kiriyama H, Fukushi Y, Nagura T, Takada H, Hai K, et al. Modulation of ischemia-reperfusion-induced hepatic injury by Kupffer cells. Dig Dis Sci. 1994;39:1265–72.PubMedCrossRefGoogle Scholar
  148. 148.
    Yokoyama I, Todo S, Miyata T, Selby R, Tzakis AG, Starzl TE. Endotoxemia and human liver transplantation. Transplant Proc. 1989;21:3833–41.PubMedGoogle Scholar
  149. 149.
    Miyata T, Yokoyama I, Todo S, Tzakis A, Selby R, Starzl TE. Endotoxaemia, pulmonary complications, and thrombocytopenia in liver transplantation. Lancet. 1989;2(8656):189–91.PubMedCrossRefGoogle Scholar
  150. 150.
    Lemasters JJ, Ji S, Thurman RG. Centrilobular injury following hypoxia in isolated, perfused rat liver. Science. 1981;213:661–3.PubMedCrossRefGoogle Scholar
  151. 151.
    Cutrn JC, Perrelli MG, Cavalieri B, Peralta C, Rosell Catafau J, Poli G. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med. 2002;33:1200–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Tsukamoto H. Redox regulation of cytokine expression in Kupffer cells. Antioxid Redox Signal. 2002;4:741–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284:G15–26.PubMedGoogle Scholar
  154. 154.
    Lichtman SN, Lemasters JJ. Role of cytokines and cytokineproducing cells in reperfusion injury to the liver. Semin Liver Dis. 1999;19:171–87.PubMedCrossRefGoogle Scholar
  155. 155.
    Colletti LM, Kunkel SL, Walz A, Burdick MD, Kunkel RG, Wilke CA, et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology. 1996;23:506–14.PubMedCrossRefGoogle Scholar
  156. 156.
    Shibuya H, Ohkohchi N, Tsukamoto S, Satomi S. Tumor necrosis factor-induced, superoxide-mediated neutrophil accumulation in cold ischemic/reperfused rat liver. Hepatology. 1997;26:113–20.PubMedCrossRefGoogle Scholar
  157. 157.
    Shirasugi N, Wakabayashi G, Shimazu M, Oshima A, Shito M, Kawachi S, et al. Up-regulation of oxygen-derived free radicals by interleukin-1 in hepatic ischemia/reperfusion injury. Transplantation. 1997;64:1398–403.PubMedCrossRefGoogle Scholar
  158. 158.
    Shito M, Wakabayashi G, Ueda M, Shimazu M, Shirasugi N, Endo M, et al. Interleukin 1 receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia-reperfusion in the rat. Transplantation. 1997;63:143–8.PubMedCrossRefGoogle Scholar
  159. 159.
    LaMarca BB, Cockrell K, Sullivan E, Bennett W, Granger JP. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension. 2005;46:82–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Zhao RZ, Chen X, Yao Q, Chen C. TNF-alpha induces interleukin-8 and endothelin-1 expression in human endothelial cells with different redox pathways. Biochem Biophys Res Commun. 2005;327:985–92.PubMedCrossRefGoogle Scholar
  161. 161.
    Sury MD, Frese-Schaper M, Mühlemann MK, Schulthess FT, Blasig IE, Täuber MG, et al. Evidence that N-acetylcysteine inhibits TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase. Free Radic Biol Med. 2006;4:1372–83.CrossRefGoogle Scholar
  162. 162.
    Rieder H, Ramadori G, Meyer zum Büschenfelde KH. Sinusoidal endothelial liver cells in vitro release endothelin – augmentation by transforming growth factor beta and Kupffer cell-conditioned media. Klin Wochenschr. 1991;69:387–91.PubMedCrossRefGoogle Scholar
  163. 163.
    Gandhi CR, Kuddus RH, Uemura T, Rao AS. Endothelin stimulates transforming growth factor-beta1 and collagen synthesis in stellate cells from control but not cirrhotic rat liver. Eur J Pharmacol. 2000;406:311–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Buxton DB, Fisher RA, Hanahan DJ, Olson MS. Platelet-activating factor-mediated vasoconstriction and glycogenolysis in the perfused rat liver. J Biol Chem. 1986;261:644–9.PubMedGoogle Scholar
  165. 165.
    Farmer DG, Kaldas F, Anselmo D, Katori M, Shen XD, Lassman C, et al. Tezosentan, a novel endothelin receptor antagonist, markedly reduces rat hepatic ischemia and reperfusion injury in three different models. Liver Transpl. 2008;14:1737–44.PubMedCrossRefGoogle Scholar
  166. 166.
    Uhlmann D, Armann B, Gaebel G, Ludwig S, Hess J, Pietsch UC, et al. Endothelin A receptor blockade reduces hepatic ischemia/reperfusion injury after warm ischemia in a pig model. J Gastrointest Surg. 2003;7:331–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Uhlmann D, Glasser S, Lauer H, Ludwig S, Gaebel G, Serr F, et al. Endothelin-A receptor blockade improves postischemic hepatic microhemodynamics. J Cardiovasc Pharmacol. 2004;44 Suppl 1:S103–4.PubMedCrossRefGoogle Scholar
  168. 168.
    Uhlmann D, Gaebel G, Armann B, Ludwig S, Hess J, Pietsch UC, et al. Attenuation of proinflammatory gene expression and microcirculatory disturbances by endothelin A receptor blockade after orthotopic liver transplantation in pigs. Surgery. 2006;139:61–72.PubMedCrossRefGoogle Scholar
  169. 169.
    Frankenberg MV, Weimann J, Fritz S, Fiedler J, Mehrabi A, Büchler MW, et al. Gadolinium chloride-induced improvement of postischemic hepatic perfusion after warm ischemia is associated with reduced hepatic endothelin secretion. Transpl Int. 2005;18:429–36.PubMedCrossRefGoogle Scholar
  170. 170.
    Fukunaga K, Takada Y, Taniguchi H, Yuzawa K, Otsuka M, Todoroki T, et al. Protecting the viability of hepatic allografts procured from non-heart-beating donors by blockade of endothelin and platelet activating factor in porcine liver transplantation. Int Surg. 1998;83:226–31.PubMedGoogle Scholar
  171. 171.
    Takada Y, Boudjema K, Jaeck D, Bel-Haouari M, Doghmi M, Chenard MP, et al. Effects of platelet-activating factor antagonist on preservation/reperfusion injury of the graft in porcine orthotopic liver transplantation. Transplantation. 1995;59:10–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Serizawa A, Nakamura S, Suzuki S, Baba S, Nakano M. Involvement of platelet-activating factor in cytokine production and neutrophil activation after hepatic ischemia-reperfusion. Hepatology. 1996;23:1656–63.PubMedCrossRefGoogle Scholar
  173. 173.
    Bjarnason I, Peters TJ, Wise RJ. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet. 1984;1(8370):179–82.PubMedCrossRefGoogle Scholar
  174. 174.
    Nanji AA, Khettry U, Sadrzadeh SM, Yamanaka T. Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. Am J Pathol. 1993;142:367–73.PubMedGoogle Scholar
  175. 175.
    Arteel G, Marsano L, Mendez C, Bentley F, McClain CJ. Advances in alcoholic liver disease. Best Pract Res Clin Gastroenterol. 2003;17:625–47.PubMedCrossRefGoogle Scholar
  176. 176.
    Shiratori Y, Geerts A, Ichida T, Kawase T, Wisse E. Kupffer cells from CCl4-induced fibrotic livers stimulate proliferation of fat-storing cells. J Hepatol. 1986;3:294–303.PubMedCrossRefGoogle Scholar
  177. 177.
    Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium: direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest. 1989;84:1780–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Thakur V, McMullen MR, Ptritchard MT, Nagy LE. Regulation of macrophage activation in alcoholic liver disease. J Gastroenterol Hepatol. 2007;22:S53–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology. 1994;20:453–60.PubMedCrossRefGoogle Scholar
  180. 180.
    Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4:8–14.PubMedCrossRefGoogle Scholar
  181. 181.
    Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and nonalcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol. 1991;12:162–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Iimuro Y, Gallucci RM, Luster MI, Kono H, Thurman RG. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology. 1997;26:1530–7.PubMedCrossRefGoogle Scholar
  183. 183.
    Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology. 1999;117:942–52.PubMedCrossRefGoogle Scholar
  184. 184.
    Ponnappa BC, Israel Y, Aini M, Zhou F, Russ R, Cao QN, et al. Inhibition of tumor necrosis factor alpha secretion and prevention of liver injury in ethanol-fed rats by antisense oligonucleotides. Biochem Pharmacol. 2005;69:569–77.PubMedCrossRefGoogle Scholar
  185. 185.
    Schade FUR, Flash S, Flohe M, Majetschak E, Kreuzfelder E, Dominguez-Fernandez E, et al. Endotoxin tolerance. In: Brade H, Opal SM, Vogel SN, Morrison DC, editors. Endotoxin in health and disease. New York: Dekker; 1999.Google Scholar
  186. 186.
    Honchel R, Ray M, Marsano L, Cohen D, Lee E, Shedlofsky S, et al. Tumor necrosis factor in alcohol enhanced endotoxin liver injury. Alcohol Clin Exp Res. 1992;16:665–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Mathurin P, Deng QG, Keshavarzian A, Choudhary S, Holmes EW, Tsukamoto H. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology. 2000;32:1008–17.PubMedCrossRefGoogle Scholar
  188. 188.
    Cao Q, Mak KM, Leiber CS. Dilinoleoylphosphatidylcholine decreases LPS-induced TNF-alpha generation in Kupffer cells of ethanol-fed rats: respective roles of MAPKs and NF-kappaB. Biochem Biophys Res Comm. 2002;294:849–53.PubMedCrossRefGoogle Scholar
  189. 189.
    Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest. 2000;106:867–72.PubMedCrossRefGoogle Scholar
  190. 190.
    Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol. 2006;79:1348–56.PubMedCrossRefGoogle Scholar
  191. 191.
    Lukkari TA, Jarvelainen HA, Oinonen T, Kettunen E, Lindros KO. Short-term ethanol exposure increases the expression of Kupffer cell CD14 receptor and lipopolysaccharide binding protein in rat liver. Alcohol Alcohol. 1999;34:311–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Yin M, Bradford BU, Wheeler MD, Uesugi T, Froh M, Goyert SM, et al. Reduced early alcohol-induced liver injury in CD14-deficient mice. J Immunol. 2001;166:4737–42.PubMedGoogle Scholar
  193. 193.
    Uesugi T, Froh M, Arteel GE, Bradford BU, Wheeler MD, Gäbele E, et al. Role of lipopolysaccharide-binding protein in early alcohol-induced liver injury in mice. J Immunol. 2002;168:2963–9.PubMedGoogle Scholar
  194. 194.
    Romics L, Mandrekar P, Kodys K, Velayudham A, Drechsler Y, Dolganiuc A, et al. Increased lipopolysaccharide sensitivity in alcoholic fatty livers is independent of leptin deficiency and toll-like receptor 4 (TLR4) or TLR2 mRNA expression. Alcohol Clin Exp Res. 2005;29:1018–26.PubMedCrossRefGoogle Scholar
  195. 195.
    Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C, et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology. 2006;43:989–1000.PubMedCrossRefGoogle Scholar
  196. 196.
    Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology. 2001;34:101–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Olleros ML, Martin ML, Vesin D, Fotio AL, Santiago-Raber ML, Rubbia-Brandt L, et al. Fat diet and alcohol-induced steatohepatitis after LPS challenge in mice: role of bioactive TNF and Th1 type cytokines. Cytokine. 2008;44:118–25.PubMedCrossRefGoogle Scholar
  198. 198.
    Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, et al. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med. 2000;132:112–7.PubMedCrossRefGoogle Scholar
  199. 199.
    Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–21.PubMedCrossRefGoogle Scholar
  200. 200.
    Cortez-Pinto H, de Moura MC, Day CP. Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol. 2006;44:197–208.PubMedCrossRefGoogle Scholar
  201. 201.
    Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000.PubMedCrossRefGoogle Scholar
  202. 202.
    Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA. 1997;94:2557–62.PubMedCrossRefGoogle Scholar
  203. 203.
    Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, et al. Tumor necrosis factor a signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.PubMedCrossRefGoogle Scholar
  204. 204.
    Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007;46:1104–10.PubMedCrossRefGoogle Scholar
  205. 205.
    Valenti L, Fracanzani AL, Dongiovanni P, Santorelli G, Branchi A, Taioli E, et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology. 2002;122:274–80.PubMedCrossRefGoogle Scholar
  206. 206.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.PubMedCrossRefGoogle Scholar
  207. 207.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity induced insulin resistance. Science. 1996;271:665–8.PubMedCrossRefGoogle Scholar
  208. 208.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKKb and NF-kB. Nat Med. 2005;11:183–90.PubMedCrossRefGoogle Scholar
  209. 209.
    Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103:1372–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Bautista AP. Neutrophilic infiltration in alcoholic hepatitis. Alcohol. 2002;27:17–21.PubMedCrossRefGoogle Scholar
  211. 211.
    Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor a in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48:206–11.PubMedCrossRefGoogle Scholar
  212. 212.
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-b links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, de Iasio R, et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab. 2005;90:3498–504.PubMedCrossRefGoogle Scholar
  214. 214.
    Thakur V, Pritchard MT, McMullen MR, Nagy LE. Adiponectin normalizes LPS-stimulated TNF-alpha production by rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol. 2006;290:G998–1007.PubMedCrossRefGoogle Scholar
  215. 215.
    You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med (Maywood). 2009;234:850–9.CrossRefGoogle Scholar
  216. 216.
    Nannipieri M, Cecchetti F, Anselmino M, Mancini E, Marchetti G, Bonotti A, et al. Pattern of expression of adiponectin receptors in human liver and its relation to nonalcoholic steatohepatitis. Obes Surg. 2009;19:467–74.PubMedCrossRefGoogle Scholar
  217. 217.
    Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117:2621–37.PubMedCrossRefGoogle Scholar
  218. 218.
    Arai M, Peng XX, Currin RT, Thurman RG, Lemasters JJ. Protection of sinusoidal endothelial cells against storage/reperfusion injury by prostaglandin E2 derived from Kupffer cells. Transplantation. 1999;68:440–5.PubMedCrossRefGoogle Scholar
  219. 219.
    Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard or killing field? Immunol Rev. 2000;174:47–62.PubMedCrossRefGoogle Scholar
  220. 220.
    Liu ZX, Govindarajan S, Okamoto S, Dennert G. Fas-mediated apoptosis causes elimination of virus-specific cytotoxic T cells in the virus-infected liver. J Immunol. 2001;166:3035–41.PubMedGoogle Scholar
  221. 221.
    Parker GA, Picut CA. Liver immunobiology. Toxicol Pathol. 2005;33:52–62.PubMedCrossRefGoogle Scholar
  222. 222.
    Munthe-Kaas AC, Kaplan G, Seljelid R. On the mechanism of internalization of opsonized particles by rat Kupffer cells in vitro. Exp Cell Res. 1976;103:201–12.PubMedCrossRefGoogle Scholar
  223. 223.
    Munthe-Kaas AC. Phagocytosis in rat Kupffer cells in vitro. Exp Cell Res. 1976;99:319–27.PubMedCrossRefGoogle Scholar
  224. 224.
    Munthe-Kaas AC. Kupffer cell suspensions and cultures as a tool in experimental carcinogenesis. J Toxicol Environ Health. 1979;5:565–73.PubMedCrossRefGoogle Scholar
  225. 225.
    Rifai A, Mannik M. Clearance of circulating IgA immune complexes is mediated by a specific receptor on Kupffer cells in mice. J Exp Med. 1984;160:125–37.PubMedCrossRefGoogle Scholar
  226. 226.
    De Brito T, Barone AA, Faria RM. Human liver biopsy in P. falciparum and P. vivax malaria. A light and electron microscopy study. Virchows Arch A Pathol Pathol Anat. 1969;348:220–9.PubMedCrossRefGoogle Scholar
  227. 227.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand induced apoptosis as a mechanism of immune privilege. Science. 1995;270:1189–92.PubMedCrossRefGoogle Scholar
  228. 228.
    Neumann-Haefelin C, Blum HE, Chisari FV, Thimme R. T cell response in hepatitis C virus infection. J Clin Virol. 2005;32:75–85.PubMedCrossRefGoogle Scholar
  229. 229.
    Starzl TE, Koep LJ, Halgrimson CG, Hood J, Schroter GP, Porter KA, et al. Fifteen years of clinical liver transplantation. Gastroenterology. 1979;77:375–88.PubMedGoogle Scholar
  230. 230.
    Iwatsuki S, Iwaki Y, Kano T, Klintmalm G, Koep LJ, Weil R, et al. Successful liver transplantation from crossmatch-positive donors. Transplant Proc. 1981;13:286–8.PubMedGoogle Scholar
  231. 231.
    Gugenheim J, Samuel D, Reynes M, Bismuth H. Liver transplantation across ABO blood group barriers. Lancet. 1990;336:519–23.PubMedCrossRefGoogle Scholar
  232. 232.
    Starzl TE, Iwatsuki S, Van Thiel DH, Gartner JC, Zitelli BJ, Malatack JJ, et al. Evolution of liver transplantation. Hepatology. 1982;2:614–36.PubMedCrossRefGoogle Scholar
  233. 233.
    Markus BH, Duquesnoy RJ, Gordon RD, Fung JJ, Vanek M, Klintmalm G, et al. Histocompatibility and liver transplant outcome. Does HLA exert a dualistic effect? Transplantation. 1988;46:372–7.PubMedGoogle Scholar
  234. 234.
    Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol. 1995;22:226–9.PubMedCrossRefGoogle Scholar
  235. 235.
    Callery MP, Kamei T, Flye MW. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation. 1989;47:1092–4.PubMedCrossRefGoogle Scholar
  236. 236.
    Sun Z, Wada T, Maemura K, Uchikura K, Hoshino S, Diehl AM, et al. Hepatic allograftderived Kupffer cells regulate T cell response in rats. Liver Transplant. 2003;9:489–97.CrossRefGoogle Scholar
  237. 237.
    Knolle PA, Uhrig A, Protzer U, Trippler M, Duchmann R, Meyer zum Büschenfelde KH, et al. Interleukin-10 expression is autoregulated at the transcriptional level in human and murine Kupffer cells. Hepatology. 1998;27:93–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Muschen M, Warskulat U, Peters-Regehr T, Bode JG, Kubitz R, Haussinger D. Involvement of CD95 (Apo-1/Fas) ligand expressed by rat Kupffer cells in hepatic immunoregulation. Gastroenterology. 1999;116:666–77.PubMedCrossRefGoogle Scholar
  239. 239.
    Brown SB, Savill J. Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol. 1999;162:480–5.PubMedGoogle Scholar
  240. 240.
    Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2002;3:51–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA

Personalised recommendations