Biliary Atresia

  • Jorge A. Bezerra
Part of the Molecular Pathology Library book series (MPLB, volume 5)


Biliary atresia is a disease of mosts. It is the most common cause of neonatal cholestasis and the most frequent indication for liver transplant in the pediatric population worldwide, accounting for 40–50% of all liver transplants in children [1]. The health care costs associated with biliary atresia are significant, reaching $65 million/year in the USA alone [1]. Despite the obvious adverse impact to children’s health, advances in understanding of the etiology and pathogenesis of biliary atresia have not kept pace with the progress in other cholestatic disorders of childhood [2]. Biliary atresia has been the most challenging pediatric liver disease to understand and treat. The lack of progress reflects the multifactorial nature of the disease, which has challenged physicians since it was recognized early in the nineteenth century [3].


Bile Duct Biliary Atresia Extrahepatic Bile Duct Intrahepatic Cholestasis Porta Hepatis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the NIH grants DK64008 and DK83781. Dr. Bezerra is the Cincinnati Principal Investigator of the NIDDK-funded Childhood Liver Disease Research and Education Network (NIH grant DK62497).


  1. 1.
    Schreiber RA, Kleinman RE. Biliary atresia. J Pediatr Gastroenterol Nutr. 2002;35:S11–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Balistreri WF. Pediatric hepatology. A half-century of progress. Clin Liver Dis. 2000;4(1):191–210.PubMedCrossRefGoogle Scholar
  3. 3.
    Bates MD, Bucuvalas JC, Alonso MH, Ryckman FC. Biliary atresia: pathogenesis and treatment. Semin Liver Dis. 1998;18(3):281–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Balistreri WF. Neonatal cholestasis. J Pediatr. 1985;106(2):171–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoon PW, Bresee JS, Olney RS, James LM, Khoury MJ. Epidemiology of biliary atresia: a population-based study. Pediatrics. 1997;99(3):376–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Chardot C, Carton M, Spire-Bendelac N, Le Pommelet C, Golmard JL, Auvert B. Epidemiology of biliary atresia in France: a national study 1986–96. J Hepatol. 1999;31(6):1006–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Danks DM, Campbell PE, Jack I, Rogers J, Smith AL. Studies of the aetiology of neonatal hepatitis and biliary atresia. Arch Dis Child. 1977;52(5):360–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Fischler B, Haglund B, Hjern A. A population-based study on the incidence and possible pre- and perinatal etiologic risk factors of biliary atresia. J Pediatr. 2002;141(2):217–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Strickland AD, Shannon K. Studies in the etiology of extrahepatic biliary atresia: time-space clustering. J Pediatr. 1982;100(5):749–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Davenport M, Savage M, Mowat AP, Howard ER. Biliary atresia splenic malformation syndrome: an etiologic and prognostic subgroup. Surgery. 1993;113(6):662–8.PubMedGoogle Scholar
  11. 11.
    Cunningham ML, Sybert VP. Idiopathic extrahepatic biliary atresia: recurrence in sibs in two families. Am J Med Genet. 1988;31(2):421–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Lachaux A, Descos B, Plauchu H, et al. Familial extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr. 1988;7(2):280–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith BM, Laberge JM, Schreiber R, Weber AM, Blanchard H. Familial biliary atresia in three siblings including twins. J Pediatr Surg. 1991;26(11):1331–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Hyams JS, Glaser JH, Leichtner AM, Morecki R. Discordance for biliary atresia in two sets of monozygotic twins. J Pediatr. 1985;107(3):420–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Strickland AD, Shannon K, Coln CD. Biliary atresia in two sets of twins. J Pediatr. 1985;107(3):418–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Davenport M, Tizzard SA, Underhill J, Mieli-Vergani G, Portmann B, Hadzic N. The biliary atresia splenic malformation syndrome: a 28-year single-center retrospective study. J Pediatr. 2006;149(3):393–400.PubMedCrossRefGoogle Scholar
  17. 17.
    Shneider BL, Brown MB, Haber B, et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J Pediatr. 2006;148(4):467–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Lykavieris P, Chardot C, Sokhn M, Gauthier F, Valayer J, Bernard O. Outcome in adulthood of biliary atresia: a study of 63 patients who survived for over 20 years with their native liver. Hepatology. 2005;41(2):366–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Muise AM, Turner D, Wine E, Kim P, Marcon M, Ling SC. Biliary atresia with choledochal cyst: implications for classification. Clin Gastroenterol Hepatol. 2006;4(11):1411–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Davenport M, Caponcelli E, Livesey E, Hadzic N, Howard E. Surgical outcome in biliary atresia: etiology affects the influence of age at surgery. Ann Surg. 2008;247(4):694–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Karrer FM, Price MR, Bensard DD, et al. Long-term results with the Kasai operation for biliary atresia. Arch Surg. 1996;131(5):493–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Kasai M. Treatment of biliary atresia with special reference to hepatic porto-enterostomy and its modifications. Prog Pediatr Surg. 1974;6:5–52.PubMedGoogle Scholar
  23. 23.
    Ohi R, Hanamatsu M, Mochizuki I, Ohkohchi N, Kasai M. Reoperation in patients with biliary atresia. J Pediatr Surg. 1985;20(3):256–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Fung KP, Lau SP. Gamma-glutamyl transpeptidase activity and its serial measurement in differentiation between extrahepatic biliary atresia and neonatal hepatitis. J Pediatr Gastroenterol Nutr. 1985;4(2):208–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Sinatra FR. The role of gamma-glutamyl transpeptidase in the preoperative diagnosis of biliary atresia. J Pediatr Gastroenterol Nutr. 1985;4(2):167–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Tazawa Y, Yamada M, Nakagawa M, et al. Significance of serum lipoprotein-X and gammaglutamyltranspeptidase in the diagnosis of biliary atresia. A preliminary study in 27 cholestatic young infants. Eur J Pediatr. 1986;145(1–2):54–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Guibaud L, Lachaud A, Touraine R, et al. MR cholangiography in neonates and infants: feasibility and preliminary applications. AJR A J Roenteg. 1998;170(1):27–31.CrossRefGoogle Scholar
  28. 28.
    Jaw TS, Kuo YT, Liu GC, Chen SH, Wang CK. MR cholangiography in the evaluation of neonatal cholestasis. Radiology. 1999;212(1):249–56.PubMedGoogle Scholar
  29. 29.
    Ohi R, Klingensmith 3rd WC, Lilly JR. Diagnosis of hepatobiliary disease in infants and children with Tc-99m-diethyl-IDA imaging. Clin Nucl Med. 1981;6(7):297–302.PubMedCrossRefGoogle Scholar
  30. 30.
    Faweya AG, Akinyinka OO, Sodeinde O. Duodenal intubation and aspiration test: utility in the differential diagnosis of infantile cholestasis. J Pediatr Gastroenterol Nutr. 1991;13(3):290–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Greene HL, Helinek GL, Moran R, O’Neill J. A diagnostic approach to prolonged obstructive jaundice by 24-hour collection of duodenal fluid. J Pediatr. 1979;95(3):412–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Heyman MB, Shapiro HA, Thaler MM. Endoscopic retrograde cholangiography in the diagnosis of biliary malformations in infants. Gastroint End. 1988;34(6):449–53.CrossRefGoogle Scholar
  33. 33.
    Lebwohl O, Waye JD. Endoscopic retrograde cholangiopancreatography in the diagnosis of extrahepatic biliary atresia. Am J Dis Child. 1979;133(6):647–9.PubMedGoogle Scholar
  34. 34.
    Wilkinson ML, Mieli-Vergani G, Ball C, Portmann B, Mowat AP. Endoscopic retrograde cholangiopancreatography in infantile cholestasis. Arch Dis Child. 1991;66(1):121–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Shirai Z, Toriya H, Maeshiro K, Ikeda S. The usefulness of endoscopic retrograde cholangiopancreatography in infants and small children. Am J Gastroenterol. 1993;88(4):536–41.PubMedGoogle Scholar
  36. 36.
    Brough AJ, Bernstein J. Conjugated hyperbilirubinemia in early infancy. A reassessment of liver biopsy. Human Path. 1974;5(5):507–16.CrossRefGoogle Scholar
  37. 37.
    Ohi R. Biliary atresia: a surgical perspective. Clin Liver Dis. 2000;4:779–804.PubMedCrossRefGoogle Scholar
  38. 38.
    Balistreri WF, Grand R, Hoofnagle JH, et al. Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology. 1996;23(6):1682–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16(4):1069–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Tan CE, Davenport M, Driver M, Howard ER. Does the morphology of the extrahepatic biliary remnants in biliary atresia influence survival? A review of 205 cases. J Pediatr Surg. 1994;29(11):1459–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Carmi R, Magee CA, Neill CA, Karrer FM. Extrahepatic biliary atresia and associated anomalies: etiologic heterogeneity suggested by distinctive patterns of associations. Am J Med Genet. 1993;45(6):683–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FF, Overbeek PA. Reversal of left-right asymmetry: a situs inversus mutation. Science. 1993;260(5108):679–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Mazziotti MV, Willis LK, Heuckeroth RO, et al. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology. 1999;30(2):372–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Perlmutter DH, Shepherd RW. Extrahepatic biliary atresia: a disease or a phenotype? Hepatology. 2002;35(6):1297–304.PubMedCrossRefGoogle Scholar
  45. 45.
    Schon P, Tsuchiya K, Lenoir D, et al. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet. 2002;110(2):157–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Davit-Spraul A, Baussan C, Hermeziu B, Bernard O, Jacquemin E. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr. 2008;46(1):111–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Jacquemin E, Cresteil D, Raynaud N, Hadchouel M. CFC1 gene mutation and biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Hepatol Nutr. 2002;34:326–7.CrossRefGoogle Scholar
  48. 48.
    Clotman F, Lannoy VJ, Reber M, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.PubMedGoogle Scholar
  49. 49.
    Sumazaki R, Shiojiri N, Isoyama S, et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 2004;36(1):83–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Kohsaka T, Yuan ZR, Guo SX, et al. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology. 2002;36(4 Pt 1):904–12.PubMedGoogle Scholar
  51. 51.
    dos Santos JL, da Silveira TR, da Silva VD, Cerski CT, Wagner MB. Medial thickening of hepatic artery branches in biliary atresia. A morphometric study. J Pediatr Surg. 2005;40(4):637–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Ho CW, Shioda K, Shirasaki K, Takahashi S, Tokimatsu S, Maeda K. The pathogenesis of biliary atresia: a morphological study of the hepatobiliary system and the hepatic artery. J Pediatr Gastroenterol Nutr. 1993;16(1):53–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Harper P, Plant JW, Unger DB. Congenital biliary atresia and jaundice in lambs and calves. [erratum appears in Aust Vet J. 1990;67(5):167]. Aust Vet J. 1990;67(1):18–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Landing BH. Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst – the concept of infantile obstructive cholangiopathy. Prog Pediatr Surg. 1974;6:113–39.PubMedGoogle Scholar
  55. 55.
    Balistreri WF, Tabor E, Gerety RJ. Negative serology for hepatitis A and B viruses in 18 cases of neonatal cholestasis. Pediatrics. 1980;66(2):269–71.PubMedGoogle Scholar
  56. 56.
    Tanaka M, Ishikawa T, Sakaguchi M. The pathogenesis of biliary atresia in Japan: immunohistochemical study of HBV-associated antigen. Acta Pathol Jap. 1993;43(7–8):360–6.Google Scholar
  57. 57.
    AK HH, Nowicki MJ, Kuramoto KI, Baroudy B, Zeldis JB, Balistreri WF. Evaluation of the role of hepatitis C virus in biliary atresia. Pediatr Infect Dis J. 1994;13(7):657–9.Google Scholar
  58. 58.
    Scotto JM, Alvarez F. Biliary artresia and non-A, non-B hepatitis? Gastroenterology. 1982;82(2):393–4.PubMedGoogle Scholar
  59. 59.
    Domiati-Saad R, Dawson DB, Margraf LR, Finegold MJ, Weinberg AG, Rogers BB. Cytomegalovirus and human herpesvirus 6, but not human papillomavirus, are present in neonatal giant cell hepatitis and extrahepatic biliary atresia. Pediatr Dev Pathol. 2000;3(4):367–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Drut R, Drut RM, Gomez MA, Cueto Rua E, Lojo MM. Presence of human papillomavirus in extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr. 1998;27(5):530–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Fischler B, Ehrnst A, Forsgren M, Orvell C, Nemeth A. The viral association of neonatal cholestasis in Sweden: a possible link between cytomegalovirus infection and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr. 1998;27(1):57–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Glaser JH, Balistreri WF, Morecki R. Role of reovirus type 3 in persistent infantile cholestasis. J Pediatr. 1984;105(6):912–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Gomez MA, Drut R, Lojo MM, Drut RM. Detection of human papillomavirus in juvenile laryngeal papillomatosis using polymerase chain reaction. Medicina. 1995;55(3):213–7.PubMedGoogle Scholar
  64. 64.
    Mason AL, Xu L, Guo L, et al. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders. [erratum appears in Lancet 1998;352(9122):152]. Lancet. 1998;351(9116):1620–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Morecki R, Glaser JH, Cho S, Balistreri WF, Horwitz MS. Biliary atresia and reovirus type 3 infection. N Engl J Med. 1984;310(24):1610.PubMedGoogle Scholar
  66. 66.
    Morecki R, Glaser JH, Johnson AB, Kress Y. Detection of reovirus type 3 in the porta hepatis of an infant with extrahepatic biliary atresia: ultrastructural and immunocytochemical study. Hepatology. 1984;4(6):1137–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Riepenhoff-Talty M, Gouvea V, Evans MJ, et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J Infect Dis. 1996;174(1):8–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Tarr PI, Haas JE, Christie DL. Biliary atresia, cytomegalovirus, and age at referral. Pediatrics. 1996;97:828–31.PubMedGoogle Scholar
  69. 69.
    Tyler KL, Sokol RJ, Oberhaus SM, et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology. 1998;27(6):1475–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Bobo L, Ojeh C, Chiu D, Machado A, Colombani P, Schwarz K. Lack of evidence for rotavirus by polymerase chain reaction/enzyme immunoassay of hepatobiliary samples from children with biliary atresia. Pediatr Res. 1997;41(2):229–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Brown WR, Sokol RJ, Levin MJ, et al. Lack of correlation between infection with reovirus 3 and extrahepatic biliary atresia or neonatal hepatitis. J Pediatr. 1988;113(4):670–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Jevon GP, Dimmick JE. Biliary atresia and cytomegalovirus infection: a DNA study. Pediatr Dev Path. 1999;2(1):11–4.CrossRefGoogle Scholar
  73. 73.
    Steele MI, Marshall CM, Lloyd RE, Randolph VE. Reovirus 3 not detected by reverse transcriptase-mediated polymerase chain reaction analysis of preserved tissue from infants with cholestatic liver disease. Hepatology. 1995;21(3):697–702.PubMedGoogle Scholar
  74. 74.
    Al-Masri AN, Flemming P, Rodeck B, Melter M, Leonhardt J, Petersen C. Expression of the interferon-induced Mx proteins in biliary atresia. J Pediatr Surg. 2006;41(6):1139–43.PubMedCrossRefGoogle Scholar
  75. 75.
    Richardson SC, Bishop RF, Smith AL. Reovirus serotype 3 infection in infants with extrahepatic biliary atresia or neonatal hepatitis. J Gastroenterol Hepatol. 1994;9(3):264–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Dussaix E, Hadchouel M, Tardieu M, Alagille D. Biliary atresia and reovirus type 3 infection. N Engl J Med. 1984;310(10):658.PubMedGoogle Scholar
  77. 77.
    Bangaru B, Morecki R, Glaser JH, Gartner LM, Horwitz MS. Comparative studies of biliary atresia in the human newborn and reovirus-induced cholangitis in weanling mice. Lab Invest. 1980;43(5):456–62.PubMedGoogle Scholar
  78. 78.
    Szavay PO, Leonhardt J, Czech-Schmidt G, Petersen C. The role of reovirus type 3 infection in an established murine model for biliary atresia. Eur J Pediatr Surg. 2002;12(4):248–50.PubMedCrossRefGoogle Scholar
  79. 79.
    Wilson GA, Morrison LA, Fields BN. Association of the reovirus S1 gene with serotype 3-induced biliary atresia in mice. J Virol. 1994;68(10):6458–65.PubMedGoogle Scholar
  80. 80.
    Petersen C, Biermanns D, Kuske M, Schakel K, Meyer-Junghanel L, Mildenberger H. New aspects in a murine model for extrahepatic biliary atresia. J Pediatr Surg. 1997;32(8):1190–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Riepenhoff-Talty M, Schaekel K, Clark HF, et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res. 1993;33:394–9.PubMedGoogle Scholar
  82. 82.
    Shivakumar P, Campbell KM, Sabla GE, et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest. 2004;114(3):322–9.PubMedGoogle Scholar
  83. 83.
    Bill AH, Haas JE, Foster GL. Biliary Atresia: histopathologic observations and reflections upon its natural history. J Pediatr Surg. 1977;12(6):977–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Gosseye S, Otte JB, De Meyer R, Maldague P. A histological study of extrahepatic biliary atresia. Acta Paediatr Belg. 1977;30(2):85–90.PubMedGoogle Scholar
  85. 85.
    Ohya T, Fujimoto T, Shimomura H, Miyano T. Degeneration of intrahepatic bile duct with lymphocyte infiltration into biliary epithelial cells in biliary atresia. J Pediatr Surg. 1995;30(4):515–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Ahmed AF, Ohtani H, Nio M, et al. CD8+ T cells infiltrating into bile ducts in biliary atresia do not appear to function as cytotoxic T cells: a clinicopathological analysis. J Pathol. 2001;193(3):383–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Broome U, Nemeth A, Hultcrantz R, Scheynius A. Different expression of HLA-DR and ICAM-1 in livers from patients with biliary atresia and Byler’s disease. J Hepatol. 1997;26(4):857–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Davenport M, Gonde C, Redkar R, et al. Immunohistochemistry of the liver and biliary tree in extrahepatic biliary atresia. J Pediatr Surg. 2001;36(7):1017–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Dillon PW, Belchis D, Minnick K, Tracy T. Differential expression of the major histocompatibility antigens and ICAM-1 on bile duct epithelial cells in biliary atresia. Tohoku J Exp Med. 1997;181(1):33–40.PubMedCrossRefGoogle Scholar
  90. 90.
    Mack CL, Tucker RM, Sokol RJ, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res. 2004;56(1):79–87.PubMedCrossRefGoogle Scholar
  91. 91.
    Mack CL, Falta MT, Sullivan AK, et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology. 2007;133(1):278–87.PubMedCrossRefGoogle Scholar
  92. 92.
    Bezerra JA, Tiao G, Ryckman FC, et al. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet. 2002;360:1563–659.CrossRefGoogle Scholar
  93. 93.
    Tracy Jr TF, Dillon P, Fox ES, Minnick K, Vogler C. The inflammatory response in pediatric biliary disease: macrophage phenotype and distribution. J Pediatr Surg. 1996;31(1):121–5. discussion 125–126.PubMedCrossRefGoogle Scholar
  94. 94.
    Urushihara N, Iwagaki H, Yagi T, et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J Pediatr Surg. 2000;35(3):446–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Kobayashi H, Puri P, O’Briain DS, Surana R, Miyano T. Hepatic overexpression of MHC class II antigens and macrophage-associated antigens (CD68) in patients with biliary atresia of poor prognosis. J Pediatr Surg. 1997;32(4):590–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Nakada M, Nakada K, Kawaguchi F, et al. Immunologic reaction and genetic factors in biliary atresia. Tohoku J Exp Med. 1997;181(1):41–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Dillon P, Belchis D, Tracy T, Cilley R, Hafer L, Krummel T. Increased expression of intercellular adhesion molecules in biliary atresia. Am J Pathol. 1994;145(2):263–7.PubMedGoogle Scholar
  98. 98.
    Mohanty SK, Shivakumar P, Sabla G, Bezerra JA. Loss of interleukin-12 modifies the pro-inflammatory response but does not ­prevent duct obstruction in experimental biliary atresia. BMC Gastroenterol. 2006;6:14.PubMedCrossRefGoogle Scholar
  99. 99.
    Tucker RM, Hendrickson RJ, Mukaida N, Gill RG, Mack CL. Progressive biliary destruction is independent of a functional tumor necrosis factor-alpha pathway in a rhesus rotavirus-induced murine model of biliary atresia. Viral Immunol. 2007;20(1):34–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Shivakumar P, Sabla G, Mohanty S, et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia. Gastroenterology. 2007;133(1):268–77.PubMedCrossRefGoogle Scholar
  101. 101.
    Shivakumar P, Sabla GE, Whitington P, Chougnet CA, Bezerra JA. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J Clin Invest. 2009;119(8):2281–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Bezerra JA. The next challenge in pediatric cholestasis: deciphering the pathogenesis of biliary atresia. J Pediatr Gastroenterol Nutr. 2006;43 Suppl 1:S23–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Kasai M, Suzuki S. A new operation for “non-correctable” biliary atresia, hepatic portoenterostomy [in japanese]. Shujutsu. 1959;13:733–9.Google Scholar
  104. 104.
    Ryckman FC, Alonso MH, Bucuvalas JC, Balistreri WF. Biliary atresia – surgical management and treatment options as they relate to outcome. Liver Transpl Surg. 1998;4(5 Suppl 1):S24–33.PubMedGoogle Scholar
  105. 105.
    Bu L, Chen H, Chang C, et al. Prophylactic oral antibiotics in prevention of recurrent cholangitis after the Kasai portoenterostomy. J Pediatr Surg. 2003;48:590–3.CrossRefGoogle Scholar
  106. 106.
    Nittono H, Tokita A, Hayashi M, et al. Ursodeoxycholic acid therapy in the treatment of biliary atresia. Biomed Pharmacother. 1989;43(1):37–41.PubMedCrossRefGoogle Scholar
  107. 107.
    Ullrich D, Rating D, Schroter W, Hanefeld F, Bircher J. Treatment with ursodeoxycholic acid renders children with biliary atresia ­suitable for liver transplantation. Lancet. 1987;2(8571):1324.PubMedCrossRefGoogle Scholar
  108. 108.
    Balistreri W, Setchell KDR, Ryckman F, and the UDCA Study Group. Bile acid therapy in paediatric liver disease. In: Paumgartner A, Stiehl A, Gerok W. Blie Acids the Hepatobiliory system. Kluwar academic Publishers, London: pp. 271–282.Google Scholar
  109. 109.
    Karrer F, JR L. Corticosteroid therapy in biliary atresia. J Pediatr Surg. 1985;20(6):693–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Muraji T, Higashimoto Y. The improved outlook for biliary atresia with corticosteroid therapy. J Pediatr Surg. 1997;32(7):1103–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Dillon P, Owings E, Cilley R, Field D, Curnow A, Georgeson K. Immunosuppression as adjuvant therapy for biliary atresia. J Pediatr Surg. 2001;36(1):80–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Meyers R, Book L, O’Gorman M, et al. High-dose steroids, ursodeoxycholic acid, and chronic intravenous antibiotics improve bile flow after Kasai procedure in infants with biliary atresia. J Pediatr Surg. 2003;38:406–11.PubMedCrossRefGoogle Scholar
  113. 113.
    Escobar MA, Jay CL, Brooks RM, et al. Effect of corticosteroid therapy on outcomes in biliary atresia after Kasai portoenterostomy. J Pediatr Surg. 2006;41(1):99–103. discussion 199–103.PubMedCrossRefGoogle Scholar
  114. 114.
    Davenport M, Stringer MD, Tizzard SA, McClean P, Mieli-Vergani G, Hadzic N. Randomized, double-blind, placebo-controlled trial of corticosteroids after Kasai portoenterostomy for biliary atresia. Hepatology. 2007;46(6):1821–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Petersen C, Harder D, Melter M, et al. Postoperative high-dose steroids do not improve mid-term survival with native liver in biliary atresia. Am J Gastroenterol. 2008;103(3):712–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Howard ER. Extrahepatic biliary atresia: a review of current management. Brit J Surg. 1983;70(4):193–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Ohi R, Mochizuki I, Komatsu K, Kasai M. Portal hypertension after successful hepatic portoenterostomy in biliary atresia. J Pediatr Surg. 1986;21(3):271–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Stringer MD, Howard ER, Mowat AP. Endoscopic sclerotherapy in the management of esophageal varices in 61 children with biliary atresia. J Pediatr Surg. 1989;24(5):438–42.PubMedCrossRefGoogle Scholar
  119. 119.
    Howard ER, Davenport M. The treatment of biliary atresia in Europe 1969–1995. Tohoku J Exp Med. 1997;181(1):75–83.PubMedCrossRefGoogle Scholar
  120. 120.
    Lilly JR, Stellin G. Variceal hemorrhage in biliary atresia. J Pediatr Surg. 1984;19(4):476–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Hall RJ, Lilly JR, Stiegmann GV. Endoscopic esophageal varix ligation: technique and preliminary results in children. J Pediatr Surg. 1988;23(12):1222–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Howard ER, Stamatakis JD, Mowat AP. Management of esophageal varices in children by injection sclerotherapy. J Pediatr Surg. 1984;19(1):2–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Paquet KJ, Lazar A. Current therapeutic strategy in bleeding esophageal varices in babies and children and long-term results of endoscopic paravariceal sclerotherapy over twenty years. Eur J Pediatr Surg. 1994;4(3):165–72.PubMedCrossRefGoogle Scholar
  124. 124.
    Altman RP, Lilly JR, Greenfield J, Weinberg A, Van Leeuwen K, Flanigan L. A multivariable risk factor analysis of the portoenterostomy (Kasai) procedure for biliary atresia. Ann Surg. 1997;226(3):348–55.PubMedCrossRefGoogle Scholar
  125. 125.
    Chiba T, Mochizuki I, Ohi R. Postoperative gastrointestinal hemorrhage in biliary atresia. Tohoku J Exp Med. 1990;162(3):255–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Schweizer P, Lunzmann K. Extrahepatic bile duct atresia: how efficient is the hepatoporto-enterostomy? Eur J Pediatr Surg. 1998;8(3):150–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Chardot C, Carton M, Spire-Bendelac N, Le Pommelet C, Golmard JL, Auvert B. Prognosis of biliary atresia in the era of liver transplantation: French national study from 1986 to 1996.[comment]. Hepatology. 1999;30(3):606–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Serinet MO, Broue P, Jacquemin E, et al. Management of patients with biliary atresia in France: results of a decentralized policy 1986–2002. Hepatology. 2006;44(1):75–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Bismuth H, Houssin D. Reduced-sized orthotopic liver graft in hepatic transplantation in children. Surgery. 1984;95(3):367–70.PubMedGoogle Scholar
  130. 130.
    Otte JB, de Ville de Goyet J, Sokal E, et al. Size reduction of the donor liver is a safe way to alleviate the shortage of size-matched organs in pediatric liver transplantation. Ann Surg. 1990;211(2):146–57.Google Scholar
  131. 131.
    Tanaka K, Uemoto S, Tokunaga Y, et al. Surgical techniques and innovations in living related liver transplantation. Ann Surg. 1993;217(1):82–91.PubMedCrossRefGoogle Scholar
  132. 132.
    Goss JA, Shackleton CR, Swenson K, et al. Orthotopic liver transplantation for congenital biliary atresia. An 11-year, single-center experience. Ann Surg. 1996;224(3):276–84. discussion 284–277.PubMedCrossRefGoogle Scholar
  133. 133.
    Millis JM, Brems JJ, Hiatt JR, et al. Orthotopic liver transplantation for biliary atresia. Evolution of management. Arch Surg. 1988;123(10):1237–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Ryckman F, Fisher R, Pedersen S, et al. Improved survival in Biliary Atresia Patients in the present era of liver transplantation. J Pediatr Surg. 1993;28(3):382–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Ryckman FC, Fisher RA, Pedersen SH, Balistreri WF. Liver transplantation in children. Sem Pediatr Surg. 1992;1(2):162–72.Google Scholar
  136. 136.
    Whitington PF, Balistreri WF. Liver transplantation in pediatrics: indications, contraindications, and pretransplant management. J Pediatr. 1991;118(2):169–77.PubMedCrossRefGoogle Scholar
  137. 137.
    Zitelli BJ, Miller JW, Gartner Jr JC, et al. Changes in life-style after liver transplantation. Pediatrics. 1988;82(2):173–80.PubMedGoogle Scholar
  138. 138.
    Sokol RJ, Shepherd RW, Superina R, Bezerra JA, Robuck P, Hoofnagle JH. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology. 2007;46(2):566–81.PubMedCrossRefGoogle Scholar
  139. 139.
    Kalinichenko VV, Zhou Y, Bhattacharyya D, et al. Haploin‑sufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem. 2002;277(14):12369–74.PubMedCrossRefGoogle Scholar
  140. 140.
    Krupczak-Hollis K, Wang X, Kalinichenko VV, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol. 2004;276(1):74–88.PubMedCrossRefGoogle Scholar
  141. 141.
    Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner KH. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest. 2009;119(6):1537–45.PubMedCrossRefGoogle Scholar
  142. 142.
    Spence JR, Lange AW, Lin SC, et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell. 2009;17(1):62–74.PubMedCrossRefGoogle Scholar
  143. 143.
    Yamashita R, Takegawa Y, Sakumoto M, et al. Defective development of the gall bladder and cystic duct in Lgr4- hypomorphic mice. Dev Dyn. 2009;238(4):993–1000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Gastroenterology, Hepatology and NutritionCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations