α1-Antitrypsin Deficiency

Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 5)

Abstract

The classical form of α1-antitrypsin (AT) deficiency, homozygous for the Z allele, is the most common genetic cause of liver disease in children and the most frequent genetic disease for which people undergo liver transplantation. As a cause of chronic hepatitis, cryptogenic cirrhosis, and hepatocellular carcinoma with new onset in the adult, this diagnosis has been under-appreciated. Among the liver diseases it has a unique and fascinating pathobiology, related to the hepatotoxic consequences of an aggregation-prone mutant protein.

Keywords

Urea Codon Dementia Heparin Carboxyl 

References

  1. 1.
    Sveger T. Liver disease in α(alpha) 1-antitrypsin deficiency detected by screening of 200, 000 infants. N Engl J Med. 1976;294:1316–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Silverman EK, Miletich JP, Pierce JA, et al. Α(ALPHA)1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. Ann Rev Respir Dis. 1989;140:961–6.CrossRefGoogle Scholar
  3. 3.
    Fagerhol MK. Serum Pi types in Norwegians. Acta Pathol Microbiol Scand. 1967;70:421–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Pierce JA, Eradio B, Dew TA. Antitrypsin phenotypes in St Louis. JAMA. 1975;231:609–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Gadek JE, Fells GA, Zimmerman RL, et al. Antielastases of the human alveolar structure: implications for the protease-antiprotease theory of emphysema. J Clin Invest. 1981;68:889–98.PubMedCrossRefGoogle Scholar
  6. 6.
    Silverman EK, Sandhaus RA. Alpha-1-antitrypsin deficiency. N Engl J Med. 2009;360:2749–57.PubMedCrossRefGoogle Scholar
  7. 7.
    Gooptu B, Ekeowa UI, Lomas DA. Mechanisms of emphysema in α(alpha) 1-antitrypsin deficiency: molecular and cellular insights. Eur Respir J. 2009;34:475–88.PubMedCrossRefGoogle Scholar
  8. 8.
    Carlson JA, Rogers BB, Rn S, et al. Accumulation of PiZ ­antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989;83:1183–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Dycaico MJ, Grant SG, Felts K, et al. Neonatal hepatitis induced by α(alpha) 1-antitrypsin: a transgenic mouse model. Science. 1988;242:1409–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Piitulainen E, Carlson J, Ohlsson K, Sveger T. Alpha1-antirypsin deficiency in 26-year-old subjects: lung, liver and protease/protease inhibitor studies. Chest. 2005;128:2076–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Rabin M, Watson M, Kidd V, et al. Regional location of α(alpha) 1-antichymotrypsin and α(alpha) 1-antitrypsin genes on human chromosome 14. Somat Cell Mol Genet. 1986;12:209–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Long GL, Chandra T, Woo SLC, et al. Complete nucleotide sequence of the cDNA for human α(alpha)1-antitrypsin and the gene for the S variant. Biochemistry. 1984;23:4828–37.PubMedCrossRefGoogle Scholar
  13. 13.
    Perlino E, Cortese R, Ciliberto G. The human α(alpha) 1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J. 1987;6:2767–71.PubMedGoogle Scholar
  14. 14.
    Hafeez W, Ciliberto G, Perlmutter DH. Constitutive and ­modulated expression of the human α(alpha) 1-antitrypsin gene: different transcriptional initiation sites used in three different cell types. J Clin Invest. 1992;89:1214–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Morgan K, Chappell S, Guetta-Baranes T, Morley S, Kalsheker N. The alpha-1-antitrypsin gene promoter in human A549 lung derived cells, and a novel transcription initiation site. Int J Biochem Cell Biol. 2009;41:1157–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease. Nat Struct Biol. 1995;2:96–101.PubMedCrossRefGoogle Scholar
  17. 17.
    Law RH, Zhang Q, McGowan S, et al. An overview of the serpin superfamily. Genome Biol. 2006;7:216–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Huber R, Carrell RW. Implications of the three-dimensional ­structure of α(alpha) 1-antitrypsin for structure and function of ­serpins. Biochemistry. 1989;28:8951–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Elliott PR, Lomas DA, Carrell RW, et al. Inhibitory conformation of the reactive loop of α(alpha) 1-antitrypsin. Nat Struct Biol. 1996;3:676–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Elliott PR, Abrahams JP, Lomas DA. Wild type α(alpha) 1-antitrypsin is in the canonical inhibitory conformation. J Mol Biol. 1998;275:419–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Carrell RW, Evans DI, Stein PE. Mobile reactive control of serpins and the control of thrombosis. Nature. 1991;353:576–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Barker A, Brantly M, Campbell E, et al. α(alpha) 1-antitrypsin deficiency: memorandum from a WHO meeting. Bull World Health Organ. 1977;75:397–415.Google Scholar
  23. 23.
    Wilson-Cox D. Alpha-1-antitrypsin deficiency. In: Scriver CB, Beuadet AL, Sly WS, et al., editors. The metabolic basis of inherited disease. New York: McGraw-Hill; 1989. p. 2409–37.Google Scholar
  24. 24.
    Brantly M, Nukiwa T, Crystal RG. Molecular basis of α(alpha) 1-antitrypsin deficiency. Am J Med. 1988;84:13–31.PubMedGoogle Scholar
  25. 25.
    Crystal RG. Alpha-1-antitrypsin deficiency, emphysema and liver disease: genetic basis and strategies for therapy. J Clin Invest. 1990;95:1343–52.CrossRefGoogle Scholar
  26. 26.
    Muensch H, Gaidulis L, Kueppers F, et al. Complete absence of serum alpha-1-antitrypsin in conjunction with an apparently normal gene structure. Am J Hum Genet. 1986;38:898–907.PubMedGoogle Scholar
  27. 27.
    Brantly M, Lee JH, Hildeshiem J, et al. α(alpha) 1-Antitrypsin gene mutation hot spot associated with the formation of a retained and degraded null variant. Am J Respir Cell Mol Biol. 1997;16:225–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Sifers RN, Brashears-Macatee S, Kidd VJ, et al. A frameshift mutation results in a truncated α(alpha) 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem. 1988;263:7330–5.PubMedGoogle Scholar
  29. 29.
    Frazier GC, Siewersen MA, Hofker MH, et al. A null deficiency allele of α(alpha) 1-antitrypsin, QO Ludwigshafen, with altered tertiary structure. J Clin Invest. 1990;86:1878–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin L, Schmidt B, Teckman J, et al. A naturally occurring nonpolymerogenic mutant of α(alpha) 1-antitrypsin characterized by prolonged retention in the endoplasmic reticulum. J Biol Chem. 2001;276:33893–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Teckman JH, Qu D, Perlmutter DH. Molecular pathogenesis of liver disease in α(alpha) 1-antitrypsin deficiency. Hepatology. 1996;24:1504–16.PubMedGoogle Scholar
  32. 32.
    Owen MC, Brennan SO, Lewis JH, et al. Mutation of antitrypsin to antithrombin: α(alpha) 1-antitrypsin Pittsburgh (358 Met-Arg) – a fatal bleeding disorder. N Engl J Med. 1983;309:694–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Curiel DT, Vogelmeier C, Hubbard RC, et al. Molecular basis of α(alpha) 1-antitrypsin deficiency and emphysema associated with α(alpha) 1-antitrypsin M mineral springs allele. Mol Cell Biol. 1990;10:47–56.PubMedGoogle Scholar
  34. 34.
    Teckman JH, Perlmutter DH. The endoplasmic reticulum degradation pathway for mutant secretory proteins α(alpha) 1-antitrypsin Z and S is distinct from that for an unassembled membrane protein. J Biol Chem. 1996;271:J13215–20.CrossRefGoogle Scholar
  35. 35.
    Kramps JA, Brouwers JW, Maesen F, et al. PiMheerlen a PiM allele resulting in very low α(alpha) 1-antitrypsin serum levels. Hum Genet. 1981;59:104–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi H, Mukiwa T, Satoh K, et al. Characterization of the gene and protein of the α(alpha) 1-antitrypsin “deficiency” allele M procida. J Biol Chem. 1988;263:15228–534.Google Scholar
  37. 37.
    Holmes MD, Brantly ML, Crystal RG. Molecular analysis of the heterogeneity among the P-family of α(alpha) 1-antitrypsin alleles. Am Rev Respir Dis. 1990;142:1185–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Reid CL, Wiener GJ, Cox DW, et al. Diffuse hepatocellular dysplasia and carcinoma associated with the Mmalton variant of α(alpha) 1-antitrypsin. Gastroenterology. 1987;93:181–7.PubMedGoogle Scholar
  39. 39.
    Curiel DT, Holmes MD, Okayama H, et al. Molecular basis of the liver and lung disease associated with α(alpha) 1-antitrypsin deficiency allele Mmalton. J Biol Chem. 1989;264:13938–45.PubMedGoogle Scholar
  40. 40.
    Crowley JJ, Sharp HL, Freier E, et al. Fatal liver disease associated with α(alpha) 1-antitrypsin deficiency PIM1/PIMduarte. Gastroenterology. 1987;93:242–4.PubMedGoogle Scholar
  41. 41.
    Seyama K, Nukiwa T, Takabe K, et al. Siiyma serine 53 (TCC) of phenylalanine 53 (TCC): a new α(alpha) 1-antitrypsin deficient variant with mutation on a predicted conserved residue of the serpin backbone. J Biol Chem. 1991;266:12627–32.PubMedGoogle Scholar
  42. 42.
    Senior RM, Tegner H, Kuhn C, et al. The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis. 1977;116:469–75.PubMedGoogle Scholar
  43. 43.
    Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709.PubMedCrossRefGoogle Scholar
  44. 44.
    Huntingdon JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition of deformation. Nature. 2000;407:923–6.CrossRefGoogle Scholar
  45. 45.
    Carrell RW, Lomas DA. Conformational disease. Lancet. 1997;350:134–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Carp H, Janoff A. Possible mechanisms of emphysema in smokers: in vitro suppression of serum elastase inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978;118:617–21.PubMedGoogle Scholar
  47. 47.
    Ossanna PJ, Test ST, Matheson NR, et al. Oxidative regulation and neutrophil elastase-alpha-1 proteinase inhibitor interactions. J Clin Invest. 1986;72:1939–51.CrossRefGoogle Scholar
  48. 48.
    Hubbard RC, Ogushi F, Fells GA, et al. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of α(alpha) 1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J Clin Invest. 1987;80:1289–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Mast AE, Enghild J, Nagase H, et al. Kinetics and physiologic relevance of the inactivation of α(alpha) 1-proteinase inhibitor, α(alpha) 1-antichymotrypsin, and antithrombin III by matrix ­metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J Biol Chem. 1991;266:15810–6.PubMedGoogle Scholar
  50. 50.
    Duranton J, Boudier C, Belorgey D, et al. DNA strongly impairs the inhibition of cathespin G by α(alpha) 1-antichymotrypsin and α(alpha) 1-proteinase inhibitor. J Biol Chem. 2000;275(6):3787–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Bathurst IC, Travis J, George PM, et al. Structural and functional characterization of the abnormal Z α(alpha) 1-antitrypsin isolated from human liver. FEBS Lett. 1984;177:179–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Ogushi F, Fells GA, Hubbard RC, et al. Z-type α(alpha) 1-antitrypsin is less competent than M1-type α(alpha) 1-antitrypsin as an inhibitor of neutrophil elastase. J Clin Invest. 1987;89:1366–74.CrossRefGoogle Scholar
  53. 53.
    Libert C, Van Molle W, Brouckaert P, et al. α(alpha) 1-Antitrypsin inhibits the lethal response to TNF in mice. J Immunol. 1996;157:5126–9.PubMedGoogle Scholar
  54. 54.
    Van Molle W, Libert C, Fiers W, et al. α(alpha) 1-Acid glycoprotein and α(alpha) 1-antitrypsin inhibit TNF-induced, but not anti-Fas–induced apoptosis of hepatocytes in mice. J Immunol. 1997;159:3555–64.PubMedGoogle Scholar
  55. 55.
    Camussi G, Tetta C, Bussolino F, et al. Synthesis and release of platelet-activating factor is inhibited by plasma α(alpha) 1-proteinase inhibitor or α(alpha) 1-antichymotrypsin and is stimulated by proteinases. J Exp Med. 1988;168:1293–306.PubMedCrossRefGoogle Scholar
  56. 56.
    Banda MJ, Rice AG, Griffin GL, et al. The inhibitory complex of human α(alpha) 1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J Exp Med. 1988;167:1608–15.PubMedCrossRefGoogle Scholar
  57. 57.
    Perlmutter DH, Travis J, Punsal PI. Elastase regulates the synthesis of its inhibitors, α(alpha) 1-proteinase inhibitor, and exaggerates the defect in homozygous PiZZ α(alpha) 1-proteinase inhibitor deficiency. J Clin Invest. 1988;81:1774–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Perlmutter DH, Glover GI, Rivetna M, et al. Identification of a serpin-enzyme complex (SEC) receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci U S A. 1990;87:3753–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Joslin G, Fallon RJ, Bullock J, et al. The SEC receptor recognizes a pentapeptide neo-domain of α(alpha) 1-antitrypsin–protease complexes. J Biol Chem. 1991;266:11281–8.Google Scholar
  60. 60.
    Joslin G, Griffin GLI, August AM, et al. The serpin-enzyme complex (SEC) receptor mediate the neutrophil chemotactic effect of α(alpha) 1-antitrypsin–elastase complexes and amyloid–β(beta) peptide. J Clin Invest. 1992;90:1150–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Shapiro L, Pott GB, Ralston AH. Alpha-1-antitrypsin inhibits human immunodeficiency virus type 1. FASEB J. 2001;15:115–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Breit SN, Wakefield D, Robinson JP, et al. The role of alpha-1-antitrypsin deficiency in the pathogenesis of immune disorders. Clin Immun Immunopathol. 1985;35:363–80.CrossRefGoogle Scholar
  63. 63.
    Pott GB, Chan ED, Dinarello CA, Shapiro L. α(alpha)1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J Leuk Biol. 2009;85:886–95.CrossRefGoogle Scholar
  64. 64.
    Perlmutter DH, Cole FS, Kilbridge P, et al. Expression of the α(alpha) 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci U S A. 1985;82:795–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Perlmutter DH, Kay RM, Cole FS, et al. The cellular defect in α(alpha) 1-proteinase inhibitor deficiency is expressed in human monocytes and xenopus oocytes injected with human liver mRNA. Proc Natl Acad Sci U S A. 1985;82:6918–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Sandstrom CS, Novoradovskaya M, Cilio C, Piitulainen E, Sveger T, Janciauskiene S. Endotoxin receptor CD14 in PiZ α(alpha)1-antitrypsin deficiency individuals. Respir Res. 2008;9:34–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Hood JM, Koep LJ, Peters RL, et al. Liver transplantation for advanced liver disease with α(alpha) 1-antitrypsin deficiency. N Engl J Med. 1980;302:272–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Lodish HF, Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol. 1987;104:221–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu MC, Yu S, Sy J, et al. Tyrosine sulfation of proteins from human hepatoma cell line HepG2. Proc Natl Acad Sci U S A. 1985;82:7160–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Dickson I, Alper CA. Changes in serum proteinase inhibitor levels following bone surgery. Clin Chim Acta. 1974;54:381–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Perlmutter DH, May LT, Sehgal PB. Interferon β(beta)2/interleukin-6 modulates synthesis of α(alpha) 1-antitrypsin in human mononuclear phagocytes and in human hepatoma cells. J Clin Invest. 1989;264:9485–90.Google Scholar
  72. 72.
    Laurell CB, Rannevik G. A comparison of plasma protein changes induced by danazol, pregnancy and estrogens. J Clin Endocrinol Metab. 1979;49:719–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Barbey-Morel C, Pierce JA, Campbell EJ, et al. Lipopolysaccharide modulates the expression of α(alpha) 1-proteinase inhibitor and other serine proteinase inhibitors in human monocytes and ­macrophages. J Exp Med. 1987;166:1041–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Kelsey GD, Povey S, Bygrave AE, et al. Species- and tissue-specific expression of human alpha-1-antitrypsin in transgenic mice. Genes Dev. 1987;1:161–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Molmenti EP, Perlmutter DH, Rubin DC. Cell-specific expression of α(alpha) 1-antitrypsin in human intestinal epithelium. J Clin Invest. 1993;92:2022–34.PubMedCrossRefGoogle Scholar
  76. 76.
    Venembre P, Boutten A, Seta N, et al. Secretion of α(alpha) 1-antitrypsin by alveolar epithelial cells. FEBS Lett. 1994;346:171–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Cichy J, Potempa J, Travis J. Biosynthesis of α(alpha) 1-proteinase inhibitor by human lung-derived epithelial cells. J Biol Chem. 1997;272(13):8250–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Hu C, Perlmutter DH. Cell-specific involvement of HNF1-β(beta) in alpha-1-antitrypsin gene expression in human respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L757–65.PubMedGoogle Scholar
  79. 79.
    Makino S, Reed CE. Distribution and elimination of exogenous alpha-1-antitrypsin. J Lab Clin Med. 1977;52:457–61.Google Scholar
  80. 80.
    Laurell CB, Nosslin B, Jeppsson JO. Catabolic rate of α(alpha) 1-antitrypsin of P1 type M and Z in man. Clin Sci Mol Med. 1978;55:103–7.PubMedGoogle Scholar
  81. 81.
    Poller W, Willnow TE, Hilpert J, et al. Differential recognition of α(alpha) 1-antitrypsin–elastase and α(alpha) 1-antichymotrypsin–cathepsin G complexes by the low density lipoprotein receptor–related protein. J Biol Chem. 1995;270:2841–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Kounnas MZ, Church FC, Argraves WS, et al. Cellular internalization and degradation of antithrombin-III-thrombin, heparin cofactor II–thrombin, and α(alpha) 1-antitrypsin–trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem. 1996;271:6523–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Joslin G, Wittwer A, Adams S, et al. Cross-competition for binding of α(alpha) 1-antitrypsin (α(alpha) 1-AT)-elastase complexes to the serpin-enzyme complex receptor by other serpin-enzyme complexes and by proteolytically modified α(alpha) 1-AT. J Biol Chem. 1993;268:1886–93.PubMedGoogle Scholar
  84. 84.
    Perlmutter DH, Joslin G, Nelson P, et al. Endocytosis and degradation of α(alpha) 1-antitrypsin–proteinase complexes is mediated by the SEC receptor. J Biol Chem. 1990;265:16713–6.PubMedGoogle Scholar
  85. 85.
    Mast AE, Enghild JJ, Pizzo SV, et al. Analysis of plasma elimination kinetics and conformation stabilities of native, proteinase-complexed and reactive site cleaved serpins: comparison of α(alpha) 1-proteinase inhibitor, α(alpha) 1-antichymotrypsin, antithrombin III, α(alpha)2-antiplasmin, angiotensinogen, and ovalbumin. Biochemistry. 1991;30:1723–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Thomas DW, Sinatra FR, Merritt RJ. Random fecal alpha-1-antitrypsin concentration in children with gastrointestinal disease. Gastroenterology. 1981;80:776–82.PubMedGoogle Scholar
  87. 87.
    Kidd VJ, Walker RB, Itakura K, et al. α(alpha) 1-Antitrypsin deficiency detection by direct analysis of the mutation of the gene. Nature. 1983;304:230–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Jeppsson JO. Amino acid substitution Glu-Lys in α(alpha) 1-antitrypsin PiZ. FEBS Lett. 1976;65:195–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Owen MC, Carrell RW. α(alpha) 1-Antitrypsin: sequence of the Z variant tryptic peptide. FEBS Lett. 1976;79:247–9.Google Scholar
  90. 90.
    Foreman RC, Judah JD, Colman A. Xenopus oocytes can synthesize but do not secrete the Z variant of human α(alpha) 1-antitrypsin. FEBS Lett. 1984;169:84–8.CrossRefGoogle Scholar
  91. 91.
    Brantly M, Courtney M, Crystal RG. Repair of the secretion of defect in the Z form of α(alpha) 1-antitrypsin by addition of a ­second mutation. Science. 1988;242:1700–2.PubMedCrossRefGoogle Scholar
  92. 92.
    McCracken AA, Kruse KB, Brown JL. Molecular basis for defective secretion of variants having altered potential for salt bridge formation between amino acids 240 and 242. Mol Cell Biol. 1989;9:1408–14.Google Scholar
  93. 93.
    Sifers RN, Hardick CP, Woo SLC. Disruption of the 240–342 salt bridge is not responsible for the defect of the PIZ α(alpha) 1-antitrypsin variant. J Biol Chem. 1989;264:2997–3001.PubMedGoogle Scholar
  94. 94.
    Wu Y, Foreman RC. The effect of amino acid substitutions at position 342 on the secretion of human α(alpha) 1-antitrypsin from Xenopus oocytes. FEBS Lett. 1990;268:21–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Lomas DA, Evans DL, Finch JJ, et al. The mechanism of Z α(alpha) 1-antitrypsin accumulation in the liver. Nature. 1992;357:605–7.PubMedCrossRefGoogle Scholar
  96. 96.
    An J-K, Blomenkamp K, Lindblad D, Teckman JH. Quantitative isolation of α(alpha) 1AT mutant Z protein polymers from human and mouse livers and the effect of heat. Hepatology. 2005;41:160–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Lomas DA, Finch JT, Seyama K, et al. α(alpha) 1-Antitrypsin Siiyama (Ser53 Phe): further evidence for intracellular loop-sheet polymerization. J Biol Chem. 1993;268:15333–5.PubMedGoogle Scholar
  98. 98.
    Lomas DA, Elliott PR, Sidhar SK, et al. α(alpha) 1-Antitrypsin MMalton (Phe52 deleted) forms loop-sheet polymers in vivo: evidence for the C-sheet mechanism of polymerization. J Biol Chem. 1995;270:16864–74.PubMedCrossRefGoogle Scholar
  99. 99.
    Elliott PR, Stein PE, Bilton D, et al. Structural explanation for the deficiency of S α(alpha) 1-antitrypsin. Nat Struct Biol. 1996;3:910–1.PubMedCrossRefGoogle Scholar
  100. 100.
    Yamasaki M, Li W, Johnson DJD, Huntington JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature. 2008;455:1255–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Beauchamp NJ, Pike RN, Daly M, et al. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational disease with in vivo latent-transition, thrombosis and heparin activation. Blood. 1998;92:2696–706.PubMedGoogle Scholar
  102. 102.
    Eldering E, Verpy E, Roem D, et al. Carboxyl-terminal substitutions in the serpin C1 inhibitor that cause loop over insertion and subsequent multimerization. J Biol Chem. 1995;270:2579–87.PubMedCrossRefGoogle Scholar
  103. 103.
    Davis RL, Shrimpton AE, Holohan PD, et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature. 1999;401:376–9.PubMedGoogle Scholar
  104. 104.
    Yu MH, Lee KN, Kim J. The Z type variation of human α(alpha) 1-antitrypsin causes a protein folding defect. Nat Struct Biol. 1995;2:363–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim J, Lee KN, Yi GS, et al. A thermostable mutation located at the hydrophobic core of α(alpha) 1-antitrypsin suppresses the folding defect of the Z-type variant. J Biol Chem. 1995;270:8597–601.PubMedCrossRefGoogle Scholar
  106. 106.
    Sidhar SK, Lomas DA, Carrell RW, et al. Mutations which impede loop-sheet polymerization enhance the secretion of human α(alpha) 1-antitrypsin deficiency variants. J Biol Chem. 1995;270:8393–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Kang HA, Lee KN, Yu MH. Folding and stability of the Z and Siiyama genetic variants of human α(alpha) 1-antitrypsin. J Biol Chem. 1997;272:510–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Schmidt B, Perlmutter DH. GRP78, GRP94 and GRP170 interact with α(alpha) 1 AT mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G444–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Povey S. Genetics of α(alpha) 1-antitrypsin deficiency in relation to neonatal liver disease. Mol Biol Med. 1990;7:161–2.PubMedGoogle Scholar
  110. 110.
    Dougherty DG, Donaldson PT, Whitehouse DB, et al. HLA ­phenotype and gene polymorphism in juvenile liver disease associated with α(alpha) 1-antitrypsin deficiency. Hepatology. 1990;12:218–23.CrossRefGoogle Scholar
  111. 111.
    Lobo-Yeo A, Senaldi G, Portmann R, et al. Class I and class II major histocompatibility complex antigen expression on hepatocytes: a study in children with liver disease. Hepatology. 1990;12:224–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Sargent CA, Dunham I, Trowsdale J, et al. Human major histocompatibility complex contains genes for the major heat shock protein HSP 70. Proc Natl Acad Sci U S A. 1989;86:1968–77.PubMedCrossRefGoogle Scholar
  113. 113.
    Wu Y, Whitman I, Molmenti E, et al. A lag in intracellular degradation of mutant α(alpha) 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ α(alpha) 1-antitrypsin deficiency. Proc Natl Acad Sci U S A. 1994;91:9014–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Werner ED, Brodsky JL, McCracken AA. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A. 1996;93:13797–801.PubMedCrossRefGoogle Scholar
  115. 115.
    Qu D, Teckman TH, Omura S, et al. Degradation of mutant secretory protein, α(alpha) 1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem. 1996;271:22791–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Teckman JH, Gilmore R, Perlmutter DH. The role of ubiquitin in proteasomal degradation of mutant α(alpha) 1-antitrypsin Z in the endoplasmic reticulum. Am J Physiol. 2000;278:G38–48.Google Scholar
  117. 117.
    Teckman JH, Burrows J, Hidvegi T, Schmidt B, Hale PD, Perlmutter DH. The proteasome participants in degradation of mutant α(alpha) 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem. 2001;276:44865–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Cabral CM, Liu Y, Moremen KW, Sifers TN. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol Biol Cell. 2002;13:2639–50.PubMedCrossRefGoogle Scholar
  119. 119.
    Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008;9:944–57.PubMedCrossRefGoogle Scholar
  120. 120.
    Teckman JH, Perlmutter DH. Retention of the mutant secretory protein α(alpha)1-antitrypsin Z in the endoplasmic reticulum induces autophagy. Am J Physiol. 2000;279:G961–74.Google Scholar
  121. 121.
    Teckman JH, An JK, Loethen S, Perlmutter DH. Fasting in α1-antitrypsin deficient liver: constitutive activation of autophagy. Am J Physiol. 2002;283:G1156–65.Google Scholar
  122. 122.
    Kamimoto T, Shoji S, Mizushima N, Umegayashi K, Hidvegi T, Perlmutter DH, et al. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem. 2006;281:4467–76.PubMedCrossRefGoogle Scholar
  123. 123.
    Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: One for soluble A1PiZ and another for aggregates of A1PiZ. Mol Biol Cell. 2006;17:203–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Kruse K, Dear A, Kaltenbrun ER, Crum BE, George PM, Brennan SO, et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am J Pathol. 2006;168:1300–8.CrossRefGoogle Scholar
  125. 125.
    Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001;292:1552–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Layfield R, Cavey JR, Lowe J. Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rev. 2003;2:343–56.PubMedCrossRefGoogle Scholar
  127. 127.
    Cabral CM, Choudhury P, Liu Y, et al. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem. 2000;275:25015–22.PubMedCrossRefGoogle Scholar
  128. 128.
    Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant alpha-1-antitrypsin Z in the ER activates caspases-4 and -12, NFkB and BAP31 but not the unfolded protein response. J Biol Chem. 2005;280:39002–15.PubMedCrossRefGoogle Scholar
  129. 129.
    Hidvegi T, Mirnics K, Hale P, Ewing M, Beckett C, Perlmutter DH. Regulator of G signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant α1-antitrypsin Z in the classical form of α1-antitrypsin deficiency. J Biol Chem. 2007;282:27769–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Chappell S, Hadzic N, Stockley R, Guetta-Baranes T, Morgan K, Kalsheker N. A polymorphism of the alpha1-antitrypsin gene represents a risk factor for liver disease. Hepatology. 2008;47:127–32.PubMedCrossRefGoogle Scholar
  131. 131.
    Pan S, Huang L, McPherson J, Muzny D, Rouhani F, Brantly M, et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology. 2009;50:275–81.PubMedCrossRefGoogle Scholar
  132. 132.
    Rudnick DA, Shikapwashya O, Blomenkamp K, Teckman JH. Indomethacin increases liver damage in a murine model of liver injury from alpha-1-antitrypsin deficiency. Hepatology. 2006;44:976–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Geller SA, Nichols WS, Dycaico MJ, et al. Histopathology of α(alpha) 1-antitrypsin liver disease in a transgenic mouse model. Hepatology. 1990;12:40–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Geller SA, Nichols WS, Kim SS, et al. Hepatocarcinogenesis is the sequel to hepatitis in Z#2 α(alpha) 1-antitrypsin transgenic mice: histopathological and DNA ploidy studies. Hepatology. 1994;19:389–97.PubMedCrossRefGoogle Scholar
  135. 135.
    Chisari FV. Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology. 1995;22:1317–25.Google Scholar
  136. 136.
    Hidvegi T, Ewing M, Male P, et al. An autophagy enhancing drug promotes degradation of mutant alpha-1-antitrypsin Z and reduces hepatic fibrosis. Science 2010;329:229–232.Google Scholar
  137. 137.
    Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitrochondrial autophagy and injury in the liver in α(alpha) 1-antitrypsin deficiency. Am J Physiol. 2004;286:G851–62.Google Scholar
  138. 138.
    Kornman B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325:477–81.CrossRefGoogle Scholar
  139. 139.
    Rudnick DA, Liao Y, An JK, Muglia LJ, Perlmutter DH, Teckman JH. Analyses of hepatocellular proliferation in a mouse model of α(alpha) 1-antitrypsin deficiency. Hepatology. 2004;39:1048–55.PubMedCrossRefGoogle Scholar
  140. 140.
    Rudnick DA, Perlmutter DH, Teckman JH. Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology. 2005;42:514–21.PubMedCrossRefGoogle Scholar
  141. 141.
    Lindblad D, Blomenkamp K, Teckman J. Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology. 2007;46:1228–35.PubMedCrossRefGoogle Scholar
  142. 142.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin1 autophagy gene. J Clin Invest. 2003;112:1809–20.PubMedGoogle Scholar
  143. 143.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100:15077–82.PubMedCrossRefGoogle Scholar
  144. 144.
    Sharp HL, Bridges RA, Krivit W. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med. 1969;73:934–9.PubMedGoogle Scholar
  145. 145.
    Hope PL, Hall MA, Millward-Sadler GH, et al. Alpha-1-antitrypsin deficiency presenting as a bleeding diathesis in the newborn. Arch Dis Child. 1982;57:68–70.PubMedGoogle Scholar
  146. 146.
    Ghishan FR, Gray GF, Greene HL. α(alpha) 1-Antitrypsin deficiency presenting with ascites and cirrhosis in the neonatal period. Gastroenterology. 1983;85:435–8.PubMedGoogle Scholar
  147. 147.
    Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in α(alpha) 1-antitrypsin deficiency. N Engl J Med. 1986;314:736–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Nebbia G, Hadchouel M, Odievre M, et al. Early assessment of evolution of liver disease associated with α(alpha) 1-antitrypsin deficiency in childhood. J Pediatr. 1983;102:661–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Ibarguen E, Gross CR, Savik SK, et al. Liver disease in α(alpha) 1-antitrypsin deficiency: prognostic indicators. J Pediatr. 1990;117:864–70.PubMedCrossRefGoogle Scholar
  150. 150.
    Volpert D, Molleston JP, Perlmutter DH. α(alpha) 1-Antitrypsin deficiency-associated liver disease progresses slowly in some children. J Pediatr Gastroenterol Nutr. 2000;31:258–63.PubMedCrossRefGoogle Scholar
  151. 151.
    Hodges JR, Millward-Sadler GH, Barbatis C, et al. α(alpha) 1-Anti-trypsin deficiency in adults with chronic active hepatitis and cryptogenic cirrhosis. N Engl J Med. 1981;304:357–60.CrossRefGoogle Scholar
  152. 152.
    Graziadel IW, Joseph JJ, Wiesner RH, et al. Increased risk of chronic liver failure in adults with heterozygous α(alpha) 1-antitrypsin deficiency. Hepatology. 1998;28:1058–63.CrossRefGoogle Scholar
  153. 153.
    Propst T, Propst A, Dietze O, et al. High prevalence of viral infections in adults with homozygous and heterozygous α(alpha) 1-antitrypsin deficiency and chronic liver disease. Ann Intern Med. 1992;117:641–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Regev A, Guaqueta C, Molina EG, Conrad A, Mishra V, Brantly ML, et al. Does the heterozygous state of alpha-1 antitrypsin deficiency have a role in chronic liver diseases? Interim results of a large case-control study. J Pediatr Gastroenterol Nutr. 2006;43:S30–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Sveger T. α(alpha) 1-Antitrypsin deficiency in early childhood. Pediatrics. 1978;62:22–35.PubMedGoogle Scholar
  156. 156.
    Sveger T, Eriksson S. The liver in adolescents with α(alpha) 1-antitrypsin deficiency. Hepatology. 1995;22:514–7.PubMedGoogle Scholar
  157. 157.
    Clark P, Chong AYH. Rare alpha-1-antitrypsin allele PIW and a history of infant liver disease. Am J Med Genet. 1993;45:674–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Kelly CP, Tyrrell DNM, McDonald GSA, et al. Heterozygous FZ α(alpha) 1-antitrypsin deficiency associated with severe emphysema and hepatic disease: case report and family study. Thorax. 1989;44:758–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Schonfeld JV, Brewer N, Zotz R, et al. Liver function in patients with pulmonary emphysema due to severe alpha-1-antitrypsin deficiency (PiZZ). Digestion. 1996;57:165–9.CrossRefGoogle Scholar
  160. 160.
    Steiner SJ, Gupta SK, Croffie JM, Fitzgerald JF. Serum levels of α(alpha) 1-antitrypsin predict phenotypic expression of the α(alpha) 1-antitrypsin gene. Dig Dis Sci. 2003;48:1793–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Qizibash A, Yong-Pong O. Alpha-1-antitrypsin liver disease: differential diagnosis of PAS-positive diastase-resistant globules in liver cells. Am J Clin Pathol. 1983;79:697–702.Google Scholar
  162. 162.
    Yunis EJ, Agostini RM, Glew RH. Fine structural observations of the liver in α(alpha) 1-antitrypsin deficiency. Am J Clin Pathol. 1976;82:265–86.Google Scholar
  163. 163.
    Kemmer N, Kaiser T, Zacharias V, Neff GW. Alpha-1-antitrypsin deficiency: Outcomes after liver transplantation. Transplant Proceed. 2008;40:1492–4.CrossRefGoogle Scholar
  164. 164.
    Sato S, Ward CL, Krouse ME, et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem. 1996;271:635–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Tamarappoo B, Verkman AS. Defective aquaporin-2 trafficking I nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998;101:2257–67.PubMedCrossRefGoogle Scholar
  166. 166.
    Brown CR, Hong-Brown LQ, Welch WJ. Correcting temperature-sensitive protein folding defects. J Clin Invest. 1997;99:1432–44.PubMedCrossRefGoogle Scholar
  167. 167.
    Burrows JAJ, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant α(alpha) 1-antitrypsin (α(alpha) 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α(alpha) 1-AT deficiency. Proc Natl Acad Sci U S A. 2000;97:1796–801.PubMedCrossRefGoogle Scholar
  168. 168.
    Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr. 2004;39:34–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Marcus NY, Perlmutter DH. Glucosidase and mannosidase inhibitors mediate increased secretion of mutant α(alpha) 1 antitrypsin Z. J Biol Chem. 2000;275:1987–92.PubMedCrossRefGoogle Scholar
  170. 170.
    Maliya M, Phillips RL, Saldanha SA, et al. Small molecules block the polymerization of Z alpha-1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem. 2007;50:5357–63.CrossRefGoogle Scholar
  171. 171.
    The Alpha-1-Antitrypsin Deficiency Registry Study Group. Survival and FEV1 decline in individuals with severe deficiency of α(alpha) 1-antitrypsin. Am J Respir Crit Care Med. 1998;158:49–59.Google Scholar
  172. 172.
    Trulock EP. Lung transplantation for α(alpha) 1-antitrypsin deficiency emphysema. Chest. 1996;110:284S–94S.PubMedCrossRefGoogle Scholar
  173. 173.
    Garcia-Blanco MA. Messenger RNA reporgramming by spliceosome-mediated RNA trans-splicing. J Clin Invest. 2003;112:474–80.PubMedGoogle Scholar
  174. 174.
    Kmiec EB. Targeted gene repair – in the arena. J Clin Invest. 2003;112:632–6.PubMedGoogle Scholar
  175. 175.
    Seidman MM, Glazer PM. The potential of gene repair via triple helix formation. J Clin Invest. 2003;114:487–94.Google Scholar
  176. 176.
    Gruenert DC, Bruscia E, Novelli G, Colosimo A, Dallapiccola B, Sangiuolo F, et al. Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest. 2003;112:637–41.PubMedGoogle Scholar
  177. 177.
    Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J. A lentivirus-based system to functionally silence genes In primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003;33:401–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Rhim JA, Sandgen EP, Degen JL, et al. Replacement of disease mouse liver by hepatic cell transplantation. Science. 1994;263:1149–52.PubMedCrossRefGoogle Scholar
  179. 179.
    Overturf K, Al-Dhalimy M, Tanguay R, et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1996;12:266–73.PubMedCrossRefGoogle Scholar
  180. 180.
    Perlmutter DH. Α(ALPHA) 1-antitrypsin deficiency. In: Snape WJ, editor. Consultations in gastroenterology. Philadelphia: WB Saunders; 1996. p. 791–802.Google Scholar
  181. 181.
    Perlmutter DH. Autophagy in alpha-1-antitrypsin deficiency. Autophagy. 2006;2:258–63.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMCPittsburghUSA

Personalised recommendations