Advertisement

Liver Development

  • Klaus H. Kaestner
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 5)

Abstract

About 5% of the body mass of mammals is made up by the liver, our largest internal organ. Absence of the liver is not compatible with life, due to the multiple essential metabolic functions of the organ. In addition, multiple diseases are caused wholly or in part by impaired liver function. Examples of the impressive functional diversity of the liver, which are discussed in detail elsewhere in this volume, are the secretion of serum components and clotting factors, the regulation of glucose, protein and lipid metabolism, and the detoxification of xenobiotics, drugs, and other chemicals.

Keywords

Gene Expression Program Linker Histone Liver Development Foxa Gene Transcription Factor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet. 2002;3:499–512.PubMedCrossRefGoogle Scholar
  2. 2.
    Zaret KS. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet. 2008;9:329–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Douarin N. Role of mesenchyme in hepatic histogenesis in the chick embryo. C R Hebd Seances Acad Sci. 1963;257:255–7.Google Scholar
  6. 6.
    Le Douarin N. Loss of power to synthesize glycogen by hepatocytes put in contact with metanephritic mesenchyme. C R Acad Sci Hebd Seances Acad Sci D. 1967;265:698–700.PubMedGoogle Scholar
  7. 7.
    Le Douarin N, Chaumont F. The morphological and functional differentiation of the hepatic endoderm in the presence of heterologous mesenchyma. C R Seances Soc Biol Fil. 1966;160:1868–71.PubMedGoogle Scholar
  8. 8.
    Le Douarin N, Houssaint E. Role of the mesoderm in the induction of the synthesis of glycogen during differentiation of the hepatic endoderm. C R Acad Sci Hebd Seances Acad Sci D. 1967;264:1872–4.PubMedGoogle Scholar
  9. 9.
    Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH, Martin GR, et al. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell. 2006;11:339–48.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen Y, Jurgens K, Hollemann T, Claussen M, Ramadori G, Pieler T. Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos. Mech Dev. 2003;120:277–88.PubMedCrossRefGoogle Scholar
  12. 12.
    Chung WS, Shin CH, Stainier DY. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell. 2008;15:738–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang MC, Li KK, Spear BT. The mouse alpha-fetoprotein promoter is repressed in HepG2 hepatoma cells by hepatocyte nuclear factor-3 (FOXA). DNA Cell Biol. 2002;21:561–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development. 2005;132:35–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, et al. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development. 2007;134:2041–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang W, Yatskievych TA, Baker RK, Antin PB. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev Biol. 2004;268:312–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47:288–95.PubMedCrossRefGoogle Scholar
  19. 19.
    McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134:2207–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Nejak-Bowen K, Monga SP. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008;4:92–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively regulates liver specification. Nature. 2006;442:688–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, Cieply B, et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008;47:1667–79.PubMedCrossRefGoogle Scholar
  23. 23.
    Zaret K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol. 1999;209:1–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Bossard P, Zaret KS. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel’s diverticulum. Development. 2000;127:4915–23.PubMedGoogle Scholar
  25. 25.
    Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125:4909–17.PubMedGoogle Scholar
  26. 26.
    Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996;10:1670–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development. 1993;119:1301–15.PubMedGoogle Scholar
  28. 28.
    Monaghan AP, Kaestner KH, Grau E, Schütz G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development. 1993;119:567–78.PubMedGoogle Scholar
  29. 29.
    Ruiz i Altaba A, Prezioso VR, Darnell JE, Jessell TM. Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech Dev. 1993;44:91–108.PubMedCrossRefGoogle Scholar
  30. 30.
    Sasaki H, Hogan BL. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development. 1993;118:47–59.PubMedGoogle Scholar
  31. 31.
    Dufort D, Schwartz L, Harpal K, Rossant J. The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development. 1998;125:3015–25.PubMedGoogle Scholar
  32. 32.
    Kaestner KH, Hiemisch H, Luckow B, Schütz G. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics. 1994;20:377–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Lai E, Prezioso VR, Tao WF, Chen WS, Darnell Jr JE. Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 1991;5:416–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Mirosevich J, Gao N, Matusik RJ. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate. 2005;62:339–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Yasui K, Sasaki H, Arakaki R, Uemura M. Distribution pattern of HNF-3beta proteins in developing embryos of two mammalian species, the house shrew and the mouse. Dev Growth Differ. 1997;39:667–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Ang SL, Rossant J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell. 1994;78:561–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Behr R, Brestelli J, Fulmer JT, Miyawaki N, Kleyman TR, Kaestner KH. Mild nephrogenic diabetes insipidus caused by Foxa1 deficiency. J Biol Chem. 2004;279:41936–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Behr R, Sackett SD, Bochkis IM, Le PP, Kaestner KH. Impaired male fertility and atrophy of seminiferous tubules caused by haploinsufficiency for Foxa3. Dev Biol. 2007;306:636–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaestner KH, Hiemisch H, Schütz G. Targeted disruption of the gene encoding hepatocyte nuclear factor 3gamma results in reduced transcription of hepatocyte-specific genes. Mol Cell Biol. 1998;18:4245–51.PubMedGoogle Scholar
  40. 40.
    Kaestner KH, Katz J, Liu Y, Drucker DJ, Schütz G. Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 1999;13:495–504.PubMedCrossRefGoogle Scholar
  41. 41.
    Shih DQ, Navas MA, Kuwajima S, Duncan SA, Stoffel M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3alpha-deficient mice. Proc Natl Acad Sci USA. 1999;96:10152–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Weinstein DC, Ruiz i Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell. 1994;78:575–88.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol. 2005;278:484–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122:689–96.PubMedCrossRefGoogle Scholar
  45. 45.
    Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364:412–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 1993;362:219–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Chaya D, Hayamizu T, Bustin M, Zaret KS. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J Biol Chem. 2001;276:44385–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002;9:279–89.PubMedCrossRefGoogle Scholar
  49. 49.
    McPherson CE, Shim EY, Friedman DS, Zaret KS. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 1993;75:387–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Cirillo LA, Zaret KS. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell. 1999;4:961–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med. 2008;14:828–36.PubMedCrossRefGoogle Scholar
  52. 52.
    Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63:2317–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Tuteja G, Jensen ST, White P, Kaestner KH. Cis-regulatory modules in the mammalian liver: composition depends on strength of Foxa2 consensus site. Nucleic Acids Res. 2008;36:4149–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Tuteja G, White P, Schug J, Kaestner KH. Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res. 2009;37:e113.PubMedCrossRefGoogle Scholar
  55. 55.
    Costa RH, Grayson DR, Xanthopoulos KG, Darnell Jr JE. A liver-specific DNA-binding protein recognizes multiple nucleotide sites in regulatory regions of transthyretin, alpha 1-antitrypsin, albumin, and simian virus 40 genes. Proc Natl Acad Sci U S A. 1988;85:3840–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994;265:103–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Sund NJ, Ang SL, Sackett SD, Shen W, Daigle N, Magnuson MA, et al. Hepatocyte nuclear factor 3beta (Foxa2) is dispensable for maintaining the differentiated state of the adult hepatocyte. Mol Cell Biol. 2000;20:5175–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435:944–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaestner KH. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4:1146–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Holtzinger A, Evans T. Gata4 regulates the formation of multiple organs. Development. 2005;132:4005–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Watt AJ, Zhao R, Li J, Duncan SA. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol. 2007;7:37.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao R, Watt AJ, Li J, Luebke-Wheeler J, Morrisey EE, Duncan SA. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol. 2005;25:2622–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, et al. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest. 2006;116:1484–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 2004;36:83–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM, Kim I, et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell. 2009;17:62–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol. 2006;290:44–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137:62–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Ludtke TH, Christoffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology. 2009;49:969–78.PubMedCrossRefGoogle Scholar
  69. 69.
    Sosa-Pineda B, Wigle JT, Oliver G. Hepatocyte migration during liver development requires Prox1. Nat Genet. 2000;25:254–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development. 2000;127:2433–45.PubMedGoogle Scholar
  71. 71.
    Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294:559–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Margagliotti S, Clotman F, Pierreux CE, Lemoine P, Rousseau GG, Henriet P, et al. Role of metalloproteinases at the onset of liver development. Dev Growth Differ. 2008;50:331–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Tanimizu N, Miyajima A. Molecular mechanism of liver development and regeneration. Int Rev Cytol. 2007;259:1–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Zeng G, Awan F, Otruba W, Muller P, Apte U, Tan X, et al. Wnt’er in liver: expression of Wnt and frizzled genes in mouse. Hepatology. 2007;45:195–204.PubMedCrossRefGoogle Scholar
  75. 75.
    Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res. 2002;62:2064–71.PubMedGoogle Scholar
  76. 76.
    Berg T, Rountree CB, Lee L, Estrada J, Sala FG, Choe A, et al. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology. 2007;46:1187–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.PubMedCrossRefGoogle Scholar
  78. 78.
    Breitwieser W, Lyons S, Flenniken AM, Ashton G, Bruder G, Willington M, et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev. 2007;21:2069–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL, et al. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development. 1999;126:505–16.PubMedGoogle Scholar
  80. 80.
    Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.PubMedCrossRefGoogle Scholar
  81. 81.
    Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Weinstein M, Monga SP, Liu Y, Brodie SG, Tang Y, Li C, et al. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol. 2001;21:5122–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Fassler R, Meyer M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 1995;9:1896–908.PubMedCrossRefGoogle Scholar
  84. 84.
    Kamiya A, Kakinuma S, Onodera M, Miyajima A, Nakauchi H. Prospero-related homeobox 1 and liver receptor homolog 1 coordinately regulate long-term proliferation of murine fetal hepatoblasts. Hepatology. 2008;48:252–64.PubMedCrossRefGoogle Scholar
  85. 85.
    Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, Dennewitz MB, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol. 2004;276:74–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations