Skip to main content

Brain Edema in Neurological Diseases

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

Abstract

In the brain, the transport of water and solute is precisely regulated. This maintains a stable and unique microenvironment that is critical to brain function. Cerebral edema results from the excess of fluid in the brain’s intra- and extracellular spaces. This occurs in response to a wide variety of insults, including cerebral ischemia, hypoxia, infection, brain tumors, and neuroinflammation. Cytotoxic edema leads to intracellular swelling without alterations in vascular permeability. Vasogenic edema is associated with damage to the blood–brain barrier. These types of edema rarely exist in isolation. In most neuropathological conditions, one type of edema predominates, but both coexist. This chapter focuses on the major molecular mechanisms triggering brain edema, including alterations in ion channels and transporters, matrix metalloproteinases, tight junction protein degradation, free radicals, and products of the arachidonic acid metabolism. We review present knowledge of the contribution to brain edema of molecules such as aquaporins, vasopressin, vascular endothelial growth factor, angiopoietins, and bradykinin. We further examine brain imaging modalities that have revolutionized clinical diagnosis of cerebral edema. Finally, we provide a critical evaluation of the current strategies for the treatment of brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    PubMed  CAS  Google Scholar 

  • Abbruscato TJ, Davis TP (1999) Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Res 842:277–286

    PubMed  CAS  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels–from atomic structure to clinical medicine. J Physiol 542:3–16

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 18:542–544

    PubMed  CAS  Google Scholar 

  • Anderson CM, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26:340–345

    PubMed  CAS  Google Scholar 

  • Armstead WM, Mirro R, Thelin OP, Shibata M, Zuckerman SL, Shanklin DR, Busija DW, Leffler CW (1992) Polyethylene glycol superoxide dismutase and catalase attenuate increased blood-brain barrier permeability after ischemia in piglets. Stroke 23:755–762

    PubMed  CAS  Google Scholar 

  • Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    PubMed  CAS  Google Scholar 

  • Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  • Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renne T, Kleinschnitz C (2009) Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke 40:285–293

    PubMed  CAS  Google Scholar 

  • Baba T, Chio CC, Black KL (1992) The effect of 5-lipoxygenase inhibition on blood-brain barrier permeability in experimental brain tumors. J Neurosurg 77:403–406

    PubMed  CAS  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    PubMed  CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    PubMed  CAS  Google Scholar 

  • Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, Lou N, Ungvari Z, Goldman SA, Csiszar A, Nedergaard M (2007) Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med 13:477–485

    PubMed  CAS  Google Scholar 

  • Bardutzky J, Schwab S (2007) Antiedema therapy in ischemic stroke. Stroke 38:3084–3094

    PubMed  CAS  Google Scholar 

  • Barzo P, Marmarou A, Fatouros P, Portella G, Czigner A, Bullock R, Young H (2002) [Cerebral edema and changes of cerebral blood volume in patients with head injuries]. Orv Hetil 143:1625–1634

    PubMed  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    PubMed  CAS  Google Scholar 

  • Bechmann I, Galea I,, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28:5–11

    PubMed  CAS  Google Scholar 

  • Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simburger E, Naftolin F, Dirnagl U, Nitsch R, Priller J (2005) Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 19:647–649

    PubMed  CAS  Google Scholar 

  • Bemana I, Nagao S (1999) Treatment of brain edema with a nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery 44:148–155

    PubMed  CAS  Google Scholar 

  • Bhardwaj A (2006) Neurological impact of vasopressin dysregulation and hyponatremia. Ann Neurol 59:229–236

    PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    PubMed  CAS  Google Scholar 

  • Boassa D, Stamer WD, Yool AJ (2006) Ion channel function of aquaporin-1 natively expressed in choroid plexus. J Neurosci 26:7811–7819

    PubMed  CAS  Google Scholar 

  • Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Hermans J (2000) The Dutch normal-pressure hydrocephalus study. How to select patients for shunting? An analysis of four diagnostic criteria. Surg Neurol 53:201–207

    PubMed  CAS  Google Scholar 

  • Bosetti F (2007) Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models. J Neurochem 102:577–586

    PubMed  CAS  Google Scholar 

  • Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL (2007a) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100:1108–1120

    PubMed  CAS  Google Scholar 

  • Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, Fiebich BL, Rosenberg GA (2007b) Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323:488–498

    PubMed  CAS  Google Scholar 

  • Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983–994

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA (1984) The role of arachidonic acid in vasogenic brain edema. Fed Proc 43:210–213

    PubMed  CAS  Google Scholar 

  • Chan LL, Khoo JB, Thng CH, Lim WE, Tay KH, Tan EK, Chang HM, Chen C, Wong MC, Tan KP (2002) Diffusion weighted MR imaging in acute stroke: the SGH experience. Singapore Med J 43:118–123

    PubMed  CAS  Google Scholar 

  • Chan PH, Schmidley JW, Fishman RA, Longar SM (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320

    PubMed  CAS  Google Scholar 

  • Chan PH, Yang GY, Chen SF, Carlson E, Epstein CJ (1991) Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann Neurol 29:482–486

    PubMed  CAS  Google Scholar 

  • Chen PE, Simon JE, Hill MD, Sohn CH, Dickhoff P, Morrish WF, Sevick RJ, Frayne R (2006b) Acute ischemic stroke: accuracy of diffusion-weighted MR imaging–effects of b value and cerebrospinal fluid suppression. Radiology 238:232–239

    PubMed  Google Scholar 

  • Chen CH, Toung TJ, Sapirstein A, Bhardwaj A (2006a) Effect of duration of osmotherapy on blood-brain barrier disruption and regional cerebral edema after experimental stroke. J Cereb Blood Flow Metab 26:951–958

    PubMed  CAS  Google Scholar 

  • Chi OZ, Hunter C, Liu X, Weiss HR (2007) Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia. Exp Neurol 204:283–287

    PubMed  CAS  Google Scholar 

  • Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, Roh JK (2004) Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab 24:926–933

    PubMed  CAS  Google Scholar 

  • Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y (2008) Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 213:196–201

    PubMed  CAS  Google Scholar 

  • Couture R, Harrisson M, Vianna RM, Cloutier F (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176

    PubMed  CAS  Google Scholar 

  • Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45:50–60

    PubMed  CAS  Google Scholar 

  • Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    PubMed  Google Scholar 

  • Cuzner ML, Opdenakker G (1999) Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 94:1–14

    PubMed  CAS  Google Scholar 

  • Dejana E, Lampugnani MG, Martinez-Estrada O, Bazzoni G (2000) The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol 44:743–748

    PubMed  CAS  Google Scholar 

  • Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino G, Furlan R, De Simoni MG, Dejana E (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190:1351–1356

    PubMed  Google Scholar 

  • del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA (2007) Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 38:646–651

    PubMed  Google Scholar 

  • Dhamija RK, Donnan GA (2008) The role of neuroimaging in acute stroke. Ann Indian Acad Neurol 11:S12–S23

    Google Scholar 

  • Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F (1991) Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 6:269–286

    PubMed  CAS  Google Scholar 

  • Dickinson LD, Betz AL (1992) Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab 12:681–690

    PubMed  CAS  Google Scholar 

  • Ding-Zhou L, Marchand-Verrecchia C, Palmier B, Croci N, Chabrier PE, Plotkine M, Margaill I (2003b) Neuroprotective effects of (S)-N-[4-[4-[(3,4-Dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl) carbonyl]-1-piperazinyl]phenyl]-2-thiophenecarboximid-amide (BN 80933), an inhibitor of neuronal nitric-oxide synthase and an antioxidant, in model of transient focal cerebral ischemia in mice. J Pharmacol Exp Ther 306:588–594

    PubMed  Google Scholar 

  • Ding-Zhou L, Margaill I, Palmier B, Pruneau D, Plotkine M, Marchand-Verrecchia C (2003a) LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces ischemic brain injury in a murine model of transient focal cerebral ischemia. Br J Pharmacol 139:1539–1547

    PubMed  Google Scholar 

  • Doczi T, Laszlo FA, Szerdahelyi P, Joo F (1984) Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14:436–441

    PubMed  CAS  Google Scholar 

  • Doczi T, Schwarcz A (2003) Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke 34:e

    Google Scholar 

  • Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14:1581–1593

    PubMed  CAS  Google Scholar 

  • Dzialowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O, von Kummer R (2006) Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke 37:973–978

    PubMed  Google Scholar 

  • Dzialowski I, Klotz E, Goericke S, Doerfler A, Forsting M, von Kummer R (2007) Ischemic brain tissue water content: CT monitoring during middle cerebral artery occlusion and reperfusion in rats. Radiology 243:720–726

    PubMed  Google Scholar 

  • Dzialowski I, Weber J, Doerfler A, Forsting M, von Kummer R (2004) Brain tissue water uptake after middle cerebral artery occlusion assessed with CT. J Neuroimaging 14:42–48

    PubMed  Google Scholar 

  • Eastwood JD, Lev MH, Wintermark M, Fitzek C, Barboriak DP, Delong DM, Lee TY, Azhari T, Herzau M, Chilukuri VR, Provenzale JM (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol 24:1869–1875

    PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    PubMed  CAS  Google Scholar 

  • Fischer S, Wiesnet M, Renz D, Schaper W (2005) H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 84:687–697

    PubMed  CAS  Google Scholar 

  • Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63:70–80

    PubMed  CAS  Google Scholar 

  • Fishman RA (1975) Brain edema. N Engl J Med 293:706–711

    PubMed  CAS  Google Scholar 

  • Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system. W.B. Saunders Co, Philadelphia, PA

    Google Scholar 

  • Fujimura M, Morita-Fujimura Y, Copin J, Yoshimoto T, Chan PH (2001) Reduction of copper, zinc-superoxide dismutase in knockout mice does not affect edema or infarction volumes and the early release of mitochondrial cytochrome c after permanent focal cerebral ischemia. Brain Res 889:208–213

    PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    PubMed  CAS  Google Scholar 

  • Garrido-Urbani S, Bradfield PF, Lee BP, Imhof BA (2008) Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans 36:203–211

    PubMed  CAS  Google Scholar 

  • Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400

    PubMed  CAS  Google Scholar 

  • Ginsberg MD, Becker DA, Busto R, Belayev A, Zhang Y, Khoutorova L, Ley JJ, Zhao W, Belayev L (2003) Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. Ann Neurol 54:330–342

    PubMed  CAS  Google Scholar 

  • Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86:125–132

    PubMed  CAS  Google Scholar 

  • Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR Am J Neuroradiol 17:431–438

    PubMed  CAS  Google Scholar 

  • Groger M, Lebesgue D, Pruneau D, Relton J, Kim SW, Nussberger J, Plesnila N (2005) Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:978–989

    PubMed  Google Scholar 

  • Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408

    PubMed  CAS  Google Scholar 

  • Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96

    PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T (2000) Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 31:1974–1981

    PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Can A, Dalkara T (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35:1449–1453

    PubMed  Google Scholar 

  • Haacke EM (2006) Susceptibility weighted imaging (SWI). Z Med Phys 16:237

    PubMed  Google Scholar 

  • Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30

    PubMed  CAS  Google Scholar 

  • Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    PubMed  Google Scholar 

  • Han F, Shirasaki Y, Fukunaga K (2006) Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 99:97–106

    PubMed  CAS  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    PubMed  CAS  Google Scholar 

  • Hellal F, Pruneau D, Palmier B, Faye P, Croci N, Plotkine M, Marchand-Verrecchia C (2003) Detrimental role of bradykinin B2 receptor in a murine model of diffuse brain injury. J Neurotrauma 20:841–851

    PubMed  CAS  Google Scholar 

  • Helmer KG, Dardzinski BJ, Sotak CH (1995) The application of porous-media theory to the investigation of time-dependent diffusion in in vivo systems. NMR Biomed 8:297–306

    PubMed  CAS  Google Scholar 

  • Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39:51–70

    PubMed  CAS  Google Scholar 

  • Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633

    PubMed  CAS  Google Scholar 

  • Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M, Staddon JM (2001) Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276:10423–10431

    PubMed  CAS  Google Scholar 

  • Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(14):1603–1613

    PubMed  CAS  Google Scholar 

  • Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    PubMed  CAS  Google Scholar 

  • Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231:632–644

    PubMed  Google Scholar 

  • Hoehn-Berlage M, Hossmann KA, Busch E, Eis M, Schmitz B, Gyngell ML (1997) Inhibition of nonselective cation channels reduces focal ischemic injury of rat brain. J Cereb Blood Flow Metab 17:534–542

    PubMed  CAS  Google Scholar 

  • Hu J, Yu Y, Juhasz C, Kou Z, Xuan Y, Latif Z, Kudo K, Chugani HT, Haacke EM (2008) MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging 28:300–307

    PubMed  Google Scholar 

  • Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Teramoto A, Nakagawa Y, Ishibashi Y, Yoshii T (1997b) Attenuation of cryogenic induced brain oedema by arginine vasopressin release inhibitor RU51599. Acta Neurochir (Wien) 139:1173–1180

    CAS  Google Scholar 

  • Ikeda Y, Toda S, Kawamoto T, Teramoto A (1997a) Arginine vasopressin release inhibitor RU51599 attenuates brain oedema following transient forebrain ischaemia in rats. Acta Neurochir (Wien) 139:1166–1172

    CAS  Google Scholar 

  • Imaizumi S, Kondo T, Deli MA, Gobbel G, Joo F, Epstein CJ, Yoshimoto T, Chan PH (1996) The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem Int 29:205–211

    PubMed  CAS  Google Scholar 

  • Ishibashi N, Prokopenko O, Weisbrot-Lefkowitz M, Reuhl KR, Mirochnitchenko O (2002) Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Brain Res Mol Brain Res 109:34–44

    PubMed  CAS  Google Scholar 

  • Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67:435–448

    PubMed  CAS  Google Scholar 

  • Ivashkova Y, Svetnitsky A, Mayzler O, Pruneau D, Benifla M, Fuxman Y, Cohen A, Artru AA, Shapira Y (2006) Bradykinin B2 receptor antagonism with LF 18-1505T reduces brain edema and improves neurological outcome after closed head trauma in rats. J Trauma 61:879–885

    PubMed  CAS  Google Scholar 

  • Jakovcevic D, Harder DR (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 79:75–97

    PubMed  CAS  Google Scholar 

  • Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39:2538–2543

    PubMed  CAS  Google Scholar 

  • Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000–3006

    PubMed  CAS  Google Scholar 

  • Kahlon B, Sundbarg G, Rehncrona S (2005) Lumbar infusion test in normal pressure hydrocephalus. Acta Neurol Scand 111:379–384

    PubMed  CAS  Google Scholar 

  • Kamada H, Yu F, Nito C, Chan PH (2007) Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke 38:1044–1049

    PubMed  CAS  Google Scholar 

  • Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams & Wilkins Co, Baltimore, MD

    Google Scholar 

  • Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5:71–81

    PubMed  CAS  Google Scholar 

  • Kaur C, Sivakumar V, Zhang Y, Ling EA (2006) Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia 54:826–839

    PubMed  CAS  Google Scholar 

  • Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39:339–345

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1995) Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 83:1051–1059

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129:851–860

    PubMed  CAS  Google Scholar 

  • Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 88:11158–11162

    PubMed  CAS  Google Scholar 

  • Klasner B, Lumenta DB, Pruneau D, Zausinger S, Plesnila N (2006) Therapeutic window of bradykinin B2 receptor inhibition after focal cerebral ischemia in rats. Neurochem Int 49:442–447

    PubMed  Google Scholar 

  • Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14

    PubMed  CAS  Google Scholar 

  • Klatzo I (1994) Evolution of brain edema concepts. Acta Neurochir Suppl (Wien) 60:3–6

    CAS  Google Scholar 

  • Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    PubMed  CAS  Google Scholar 

  • Kokubo Y, Matson GB, Derugin N, Hill T, Mancuso A, Chan PH, Weinstein PR (2002) Transgenic mice expressing human copper-zinc superoxide dismutase exhibit attenuated apparent diffusion coefficient reduction during reperfusion following focal cerebral ischemia. Brain Res 947:1–8

    PubMed  CAS  Google Scholar 

  • Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189

    PubMed  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    PubMed  CAS  Google Scholar 

  • Kozniewska E, Roberts TP, Tsuura M, Mintorovitch J, Moseley ME, Kucharczyk J (1995) NG-nitro-L-arginine delays the development of brain injury during focal ischemia in rats. Stroke 26:282–289

    PubMed  CAS  Google Scholar 

  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    PubMed  CAS  Google Scholar 

  • Kremer S, Oppenheim C, Schmitt E, Dietemann JL (2007) [Diffusion MRI: technique and clinical applications]. J Radiol 88:428–443

    PubMed  CAS  Google Scholar 

  • Krizanac-Bengez L, Hossain M, Fazio V, Mayberg M, Janigro D (2006) Loss of flow induces leukocyte-mediated MMP/TIMP imbalance in dynamic in vitro blood-brain barrier model: role of pro-inflammatory cytokines. Am J Physiol Cell Physiol 291:C740–C749

    PubMed  CAS  Google Scholar 

  • Kucinski T, Vaterlein O, Glauche V, Fiehler J, Klotz E, Eckert B, Koch C, Rother J, Zeumer H (2002) Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke 33:1786–1791

    PubMed  Google Scholar 

  • Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, Weih M, Dirnagl U (2007) Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 38:2526–2530

    PubMed  CAS  Google Scholar 

  • Kunz A, Anrather J, Zhou P, Orio M, Iadecola C (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab 27:545–551

    PubMed  CAS  Google Scholar 

  • Lagrange P, Romero IA, Minn A, Revest PA (1999) Transendothelial permeability changes induced by free radicals in an in vitro model of the blood-brain barrier. Free Radic Biol Med 27:667–672

    PubMed  CAS  Google Scholar 

  • Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 50:258–265

    PubMed  CAS  Google Scholar 

  • Lapchak PA, Chapman DF, Zivin JA (2000) Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke 31:3034–3040

    PubMed  CAS  Google Scholar 

  • Laszlo FA, Varga C, Nakamura S (1999) Vasopressin receptor antagonist OPC-31260 prevents cerebral oedema after subarachnoid haemorrhage. Eur J Pharmacol 364:115–122

    PubMed  CAS  Google Scholar 

  • Lehmberg J, Beck J, Baethmann A, Uhl E (2003) Bradykinin antagonists reduce leukocyte-endothelium interactions after global cerebral ischemia. J Cereb Blood Flow Metab 23:441–448

    PubMed  CAS  Google Scholar 

  • Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, Tauber MG, Leppert D (2001) Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 124:1734–1742

    PubMed  CAS  Google Scholar 

  • Leib SL, Leppert D, Clements J, Tauber MG (2000) Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 68:615–620

    PubMed  CAS  Google Scholar 

  • Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2

    PubMed  Google Scholar 

  • Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820

    PubMed  CAS  Google Scholar 

  • Liu KJ, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80

    Google Scholar 

  • Lo AC, Chen AY, Hung VK, Yaw LP, Fung MK, Ho MC, Tsang MC, Chung SS, Chung SK (2005) Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J Cereb Blood Flow Metab 25:998–1011

    PubMed  CAS  Google Scholar 

  • Lorenzl S, Kodel U, Frei K, Pfister HW (1996) Effect of the bradykinin B2 receptor antagonist Hoe140 in experimental pneumococcal meningitis in the rat. Eur J Pharmacol 308:335–341

    PubMed  CAS  Google Scholar 

  • Lumenta DB, Plesnila N, Klasner B, Baethmann A, Pruneau D, Schmid-Elsaesser R, Zausinger S (2006) Neuroprotective effects of a postischemic treatment with a bradykinin B2 receptor antagonist in a rat model of temporary focal cerebral ischemia. Brain Res 1069:227–234

    PubMed  CAS  Google Scholar 

  • Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D (2007) Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 27:11869–11876

    PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    PubMed  CAS  Google Scholar 

  • Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N (2005) Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta Neurochir Suppl 95:237–240

    PubMed  CAS  Google Scholar 

  • Marmarou A, Fatouros PP, Barzo P, Portella G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward JD, Bullock MR, Young HF (2000b) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193

    PubMed  CAS  Google Scholar 

  • Marmarou A, Portella G, Barzo P, Signoretti S, Fatouros P, Beaumont A, Jiang T, Bullock R (2000a) Distinguishing between cellular and vasogenic edema in head injured patients with focal lesions using magnetic resonance imaging. Acta Neurochir Suppl 76:349–351

    PubMed  CAS  Google Scholar 

  • Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T (2005) Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 352:777–785

    PubMed  CAS  Google Scholar 

  • Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T (2008) Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 358:2127–2137

    PubMed  CAS  Google Scholar 

  • Mayhan WG (1999) VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol 276:C1148–C1153

    PubMed  CAS  Google Scholar 

  • McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462

    PubMed  CAS  Google Scholar 

  • Miller BA (2004) Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 143:515–516

    PubMed  CAS  Google Scholar 

  • Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252

    PubMed  CAS  Google Scholar 

  • Molnar AH, Varga C, Berko A, Rojik I, Parducz A, Laszlo F, Laszlo FA (2008a) Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res 170:519–525

    PubMed  CAS  Google Scholar 

  • Molnar AH, Varga C, Berko A, Rojik I, Parducz A, Laszlo F, Laszlo FA (2008b) Inhibitory effect of vasopressin receptor antagonist OPC-31260 on experimental brain oedema induced by global cerebral ischaemia. Acta Neurochir (Wien) 150:265–271

    CAS  Google Scholar 

  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 147:664–673

    PubMed  CAS  Google Scholar 

  • Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163–1172

    PubMed  CAS  Google Scholar 

  • Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39:3372–3377

    PubMed  CAS  Google Scholar 

  • Mylonakou MN, Petersen PH, Rinvik E, Rojek A, Valdimarsdottir E, Zelenin S, Zeuthen T, Nielsen S, Ottersen OP, Amiry-Moghaddam M (2009) Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons. J Neurosci Res 87:1310–1322

    PubMed  CAS  Google Scholar 

  • Nagafuji T, Matsui T, Koide T, Asano T (1992) Blockade of nitric oxide formation by N omega-nitro-L-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats. Neurosci Lett 147:159–162

    PubMed  CAS  Google Scholar 

  • Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100:672–678

    PubMed  CAS  Google Scholar 

  • Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T, Nagao S, Xi G, Keep RF, Itano T (2008) Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 39:463–469

    PubMed  CAS  Google Scholar 

  • Neumann-Haefelin T, Moseley ME, Albers GW (2000a) New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Ann Neurol 47:559–570

    PubMed  CAS  Google Scholar 

  • Neumann-Haefelin T, Wittsack HJ, Fink GR, Wenserski F, Li TQ, Seitz RJ, Siebler M, Modder U, Freund HJ (2000c) Diffusion- and perfusion-weighted MRI: influence of severe carotid artery stenosis on the DWI/PWI mismatch in acute stroke. Stroke 31:1311–1317

    PubMed  CAS  Google Scholar 

  • Neumann-Haefelin T, Wittsack HJ, Wenserski F, Li TQ, Moseley ME, Siebler M, Freund HJ (2000b) Diffusion- and perfusion-weighted MRI in a patient with a prolonged reversible ischaemic neurological deficit. Neuroradiology 42:444–447

    PubMed  CAS  Google Scholar 

  • Newman PJ (1994) The role of PECAM-1 in vascular cell biology. Ann N Y Acad Sci 714:165–174

    PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  • Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051

    PubMed  CAS  Google Scholar 

  • Ning M, Wang X, Lo EH (2008) Chapter 6 Reperfusion injury after stroke: neurovascular proteases and the blood-brain barrier. Handb Clin Neurol 92:117–136

    Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    PubMed  CAS  Google Scholar 

  • O’Brien P, Sellar RJ, Wardlaw JM (2004) Fogging on T2-weighted MR after acute ischaemic stroke: how often might this occur and what are the implications? Neuroradiology 46:635–641

    PubMed  Google Scholar 

  • O’Donnell ME, Duong V, Suvatne J, Foroutan S, Johnson DM (2005) Arginine vasopressin stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransporter activity is V1 receptor and [Ca] dependent. Am J Physiol Cell Physiol 289:C283–C292

    PubMed  Google Scholar 

  • Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19:76–78

    PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

    PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Verkman AS (2008) Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 170:589–601

    PubMed  CAS  Google Scholar 

  • Pappius HM, Dayes LA (1965) Hypertonic urea. Its effect on the distribution of water and electrolytes in normal and edematous brain tissues. Arch Neurol 13:395–402

    PubMed  CAS  Google Scholar 

  • Pascale CL, Szmydynger-Chodobska J, Sarri JE, Chodobski A (2006) Traumatic brain injury results in a concomitant increase in neocortical expression of vasopressin and its V1a receptor. J Physiol Pharmacol 57(Suppl 11):161–167

    PubMed  Google Scholar 

  • Paul R, Lorenzl S, Koedel U, Sporer B, Vogel U, Frosch M, Pfister HW (1998) Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol 44:592–600

    PubMed  CAS  Google Scholar 

  • Pfefferkorn T, Rosenberg GA (2003) Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 34:2025–2030

    PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    PubMed  CAS  Google Scholar 

  • Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Rev 44:13–47

    PubMed  CAS  Google Scholar 

  • Piontek J, Winkler L, Wolburg H, Muller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    PubMed  CAS  Google Scholar 

  • Plesnila N, Schulz J, Stoffel M, Eriskat J, Pruneau D, Baethmann A (2001) Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 18:1049–1058

    PubMed  CAS  Google Scholar 

  • Provenzale JM, Sorensen AG (1999) Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. AJR Am J Roentgenol 173:1459–1467

    PubMed  CAS  Google Scholar 

  • Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344:1450–1460

    PubMed  CAS  Google Scholar 

  • Rabinstein AA (2006) Treatment of cerebral edema. Neurologist 12:59–73

    PubMed  Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New York, NY

    Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986

    PubMed  CAS  Google Scholar 

  • Reddy MK, Labhasetwar V (2009) Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 23:1384–1395

    Google Scholar 

  • Reijerkerk A, Kooij G, van der Pol SM, Khazen S, Dijkstra CD, de Vries HE (2006) Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J 20:2550–2552

    PubMed  CAS  Google Scholar 

  • Rieth KG, Fujiwara K, Di Chiro G, Klatzo I, Brooks RA, Johnston GS, O’Connor CM, Mitchell LG (1980) Serial measurements of CT attenuation and specific gravity in experimental cerebral edema. Radiology 135:343–348

    PubMed  CAS  Google Scholar 

  • Ringel F, Baethmann A, Plesnila N (2006a) Lactacidosis-induced glial cell swelling depends on extracellular Ca2+. Neurosci Lett 398:306–309

    PubMed  CAS  Google Scholar 

  • Ringel F, Bieringer F, Baethmann A, Plesnila N (2006b) Effect of oxidative stress on glial cell volume. J Neurotrauma 23:1693–1704

    PubMed  Google Scholar 

  • Roberts HC, Roberts TP, Smith WS, Lee TJ, Fischbein NJ, Dillon WP (2001) Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. AJNR Am J Neuroradiol 22:1077–1080

    PubMed  CAS  Google Scholar 

  • Rollins NK (2007) Clinical applications of diffusion tensor imaging and tractography in children. Pediatr Radiol 37:769–780

    PubMed  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    PubMed  CAS  Google Scholar 

  • Rosenberg GA (1990) Brain fluids and metabolism. Oxford University Press, New York, NY

    Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    PubMed  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Dencoff JE, Correa N Jr., Reiners M, Ford CC (1996b) Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology 46:1626–1632

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2195

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Estrada E, Kyner WT (1990) Vasopressin-induced brain edema is mediated by the V1 receptor. Adv Neurol 52:149–154

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 238:F42–F49

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Navratil M (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48:921–926

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996a) Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16:360–366

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Scremin O, Estrada E, Kyner WT (1992) Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke 23:1767–1774

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    PubMed  Google Scholar 

  • Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314:738–744

    PubMed  CAS  Google Scholar 

  • Schipke CG, Kettenmann H (2004) Astrocyte responses to neuronal activity. Glia 47:226–232

    PubMed  Google Scholar 

  • Schleien CL, Eberle B, Shaffner DH, Koehler RC, Traystman RJ (1994) Reduced blood-brain barrier permeability after cardiac arrest by conjugated superoxide dismutase and catalase in piglets. Stroke 25:1830–1835

    PubMed  CAS  Google Scholar 

  • Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125:2549–2557

    PubMed  Google Scholar 

  • Schramm P, Schellinger PD, Klotz E, Kallenberg K, Fiebach JB, Kulkens S, Heiland S, Knauth M, Sartor K (2004) Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 35:1652–1658

    PubMed  Google Scholar 

  • Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T (2006) Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl 96:130–133

    PubMed  CAS  Google Scholar 

  • Shuaib A, Xu WC, Yang T, Noor R (2002) Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke 33:3033–3037

    PubMed  CAS  Google Scholar 

  • Sidel VW, Solomon AK (1957) Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol 41:243–257

    PubMed  CAS  Google Scholar 

  • Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12:433–440

    PubMed  CAS  Google Scholar 

  • Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V (2009b) Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab 29:317–330

    PubMed  CAS  Google Scholar 

  • Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK, Gerzanich V (2007) Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 117:2105–2113

    PubMed  CAS  Google Scholar 

  • Simard JM, Woo SK, Bhatta S, Gerzanich V (2008) Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol 8:42–49

    PubMed  CAS  Google Scholar 

  • Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V (2009a) Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke 40:604–609

    PubMed  CAS  Google Scholar 

  • Sood R, Yang Y, Taheri S, Candelario-Jalil E, Estrada EY, Walker EJ, Thompson J, Rosenberg GA (2009) Increased apparent diffusion coefficients on MRI linked with matrix metalloproteinases and edema in white matter after bilateral carotid artery occlusion in rats. J Cereb Blood Flow Metab 29:308–316

    PubMed  CAS  Google Scholar 

  • Staub F, Baethmann A, Peters J, Weigt H, Kempski O (1990) Effects of lactacidosis on glial cell volume and viability. J Cereb Blood Flow Metab 10:866–876

    PubMed  CAS  Google Scholar 

  • Staub F, Winkler A, Peters J, Kempski O, Kachel V, Baethmann A (1994) Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J Cereb Blood Flow Metab 14:1030–1039

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    PubMed  CAS  Google Scholar 

  • Suda S, Igarashi H, Arai Y, Andou J, Chishiki T, Katayama Y (2007) Effect of edaravone, a free radical scavenger, on ischemic cerebral edema assessed by magnetic resonance imaging. Neurol Med Chir (Tokyo) 47:197–202

    Google Scholar 

  • Szmydynger-Chodobska J, Chung I, Kozniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A (2004) Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma 21:1090–1102

    PubMed  Google Scholar 

  • Taguchi Y, Takashima S, Hirano K, Dougu N, Toyoda S, Tanaka K (2007) Cerebral microbleeds identified by diffusion weighted MR imaging in a case of acute ischemic stroke. Intern Med 46:1275–1276

    PubMed  Google Scholar 

  • Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43

    PubMed  CAS  Google Scholar 

  • Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil Granger D, Zhang JH (2005) Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 94:1342–1350

    PubMed  CAS  Google Scholar 

  • Terajima K, Igarashi H, Hirose M, Matsuzawa H, Nishizawa M, Nakada T (2008) Serial assessments of delayed encephalopathy after carbon monoxide poisoning using magnetic resonance spectroscopy and diffusion tensor imaging on 3.0T system. Eur Neurol 59:55–61

    PubMed  Google Scholar 

  • Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57

    PubMed  CAS  Google Scholar 

  • Thurston G (2002) Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat 200:575–580

    PubMed  CAS  Google Scholar 

  • Trabold R, Krieg S, Scholler K, Plesnila N (2008) Role of vasopressin V(1a) and V(2) receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma 25:1459–1465

    PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    PubMed  CAS  Google Scholar 

  • Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

    PubMed  CAS  Google Scholar 

  • Unger E, Littlefield J, Gado M (1988) Water content and water structure in CT and MR signal changes: possible influence in detection of early stroke. AJNR Am J Neuroradiol 9:687–691

    PubMed  CAS  Google Scholar 

  • Vakili A, Kataoka H, Plesnila N (2005) Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25:1012–1019

    PubMed  CAS  Google Scholar 

  • Valable S, Montaner J, Bellail A, Berezowski V, Brillault J, Cecchelli R, Divoux D, Mackenzie ET, Bernaudin M, Roussel S, Petit E (2005) VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab 25:1491–1504

    PubMed  CAS  Google Scholar 

  • van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Cairns B, Tumas D, Gerlai R, Williams SP, van Lookeren CM, Ferrara N (1999) VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104:1613–1620

    PubMed  Google Scholar 

  • Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    PubMed  CAS  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    PubMed  CAS  Google Scholar 

  • Videen TO, Zazulia AR, Manno EM, Derdeyn CP, Adams RE, Diringer MN, Powers WJ (2001) Mannitol bolus preferentially shrinks non-infarcted brain in patients with ischemic stroke. Neurology 57:2120–2122

    PubMed  CAS  Google Scholar 

  • von Kummer R, Bourquain H, Bastianello S, Bozzao L, Manelfe C, Meier D, Hacke W (2001) Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 219:95–100

    Google Scholar 

  • Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    PubMed  CAS  Google Scholar 

  • Wang W, Dentler WL, Borchardt RT (2001) VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol 280:H434–H440

    PubMed  CAS  Google Scholar 

  • Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, Lo EH (2004) Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 35:2726–2730

    PubMed  CAS  Google Scholar 

  • Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, Wang Y, Chopp M (2006) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26:5996–6003

    PubMed  CAS  Google Scholar 

  • Weed LH (1935) Certain anatomical and physiological aspects of the meninges and cerebrospinal fluid. Brain 58:383–397

    Google Scholar 

  • Weed LH (1938) Meninges and Cerebrospinal Fluid. J Anat 72:181–215

    PubMed  CAS  Google Scholar 

  • Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M, Mirochnitchenko O (1998) Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Brain Res Mol Brain Res 53:333–338

    PubMed  CAS  Google Scholar 

  • Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36:156–164

    PubMed  CAS  Google Scholar 

  • Winkler AS, Baethmann A, Peters J, Kempski O, Staub F (2000) Mechanisms of arachidonic acid induced glial swelling. Brain Res Mol Brain Res 76:419–423

    PubMed  CAS  Google Scholar 

  • Wintermark M et al (2008) Acute stroke imaging research roadmap. Stroke 39:1621–1628

    PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    PubMed  CAS  Google Scholar 

  • Wong CH, Bozinovski S, Hertzog PJ, Hickey MJ, Crack PJ (2008) Absence of glutathione peroxidase-1 exacerbates cerebral ischemia-reperfusion injury by reducing post-ischemic microvascular perfusion. J Neurochem 107:241–252

    PubMed  CAS  Google Scholar 

  • Xia CF, Smith RS Jr., Shen B, Yang ZR, Borlongan CV, Chao L, Chao J (2006) Postischemic brain injury is exacerbated in mice lacking the kinin B2 receptor. Hypertension 47:752–761

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Yokota K, Yamashita A, Oda M (1996) Effect of KBT-3022, a new cyclooxygenase inhibitor, on experimental brain edema in vitro and in vivo. Eur J Pharmacol 297:225–231

    PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    PubMed  CAS  Google Scholar 

  • Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170

    PubMed  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    PubMed  CAS  Google Scholar 

  • Yen MH, Lee SH (1987) Effects of cyclooxygenase and lipoxygenase inhibitors on cerebral edema induced by freezing lesions in rats. Eur J Pharmacol 144:369–373

    PubMed  CAS  Google Scholar 

  • Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931–944

    PubMed  CAS  Google Scholar 

  • Zador Z, Bloch O, Yao X, Manley GT (2007) Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 161:185–194

    PubMed  CAS  Google Scholar 

  • Zausinger S, Lumenta DB, Pruneau D, Schmid-Elsaesser R, Plesnila N, Baethmann A (2002) Effects of LF 16-0687 Ms, a bradykinin B(2) receptor antagonist, on brain edema formation and tissue damage in a rat model of temporary focal cerebral ischemia. Brain Res 950:268–278

    PubMed  CAS  Google Scholar 

  • Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A (2008) The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 36:2634–2640

    PubMed  CAS  Google Scholar 

  • Zhang Z, Chopp M (2002) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12:62–66

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M (2002) Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 22:379–392

    PubMed  CAS  Google Scholar 

  • Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY (2005) Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 36:1533–1537

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (NIH) to GAR (R01 NS045847 and R01 NS052305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Candelario-Jalil, E., Taheri, S., Rosenberg, G.A. (2011). Brain Edema in Neurological Diseases. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_5

Download citation

Publish with us

Policies and ethics