Skip to main content

RNA Pathologies in Neurological Disorders

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

  • 947 Accesses

Abstract

RNA is not a simple intermediate linking DNA and protein. RNA is widely transcribed from a variety of genomic regions, and extensive studies on the functional roles and regulations of noncoding RNAs including antisense RNAs and small RNAs are in progress. In addition, the human genome project revealed that we humans carry as few as ∼22,000 genes. Humans exploit tissue-specific and developmental stage-specific alternative splicing to generate a large variety of molecules in specific cells at specific developmental stages. Neurological disorders are also subject to aberrations of the splicing mechanisms. This review focuses mostly on splicing abnormalities due to pathological alterations of splicing cis-elements and trans-factors. Pathomechanisms associated with disrupted splicing cis-elements can be applied to any human diseases, and we did not restrict the descriptions to neurological diseases. On the other hand, we limited the descriptions of dysregulated splicing trans-factors to neurological disorders. Neurological diseases covered in this review include congenital myasthenic syndromes, spinal muscular atrophy, myotonic dystrophy, Alzheimer’s disease, frontotemporal dementia with Parkinsonism linked to chromosome 17, facioscapulohumeral muscular dystrophy, fragile X-associated tremor/ataxia syndrome, Prader–Willi syndrome, Rett syndrome, spinocerebellar atrophy type 8, and paraneoplastic neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nonsense-mediated mRNA decay (NMD). NMD is a quality-assurance mechanism that degrades mRNAs harboring a premature termination codon (PTC) (Chang et al., 2007). Proteins translated from mRNAs harboring PTCs potentially have dominant-negative or deleterious activities. In pre-mRNA splicing, an exon–junction complex (EJC) is deposited 20–24 nucleotides upstream of each exon–exon junction. Ribosomes remove EJCs, but, in the presence of a PTC, EJCs stay on the transcript and trigger the NMD pathway in the cytoplasm.

References

  • Abovich N, Rosbash M (1997) Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89:403–412

    Article  PubMed  CAS  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  • Angelozzi C, Borgo F, Tiziano FD, Martella A, Neri G et al (2008) Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells. J Med Genet 45:29–31

    Article  PubMed  CAS  Google Scholar 

  • Arning S, Gruter P, Bilbe G, Kramer A (1996) Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2:794–810

    PubMed  CAS  Google Scholar 

  • Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778

    Article  PubMed  CAS  Google Scholar 

  • Bian Y, Masuda A, Matsuura T, Ito M, Okushin K et al (2009) Tannic acid facilitates expression of the polypyrimidine tract binding protein and alleviates deleterious inclusion of CHRNA1 exon P3A due to an hnRNP H-disrupting mutation in congenital myasthenic syndrome. Hum Mol Genet 18:1229–1237

    Google Scholar 

  • Bianchi P, Zanella A, Alloisio N, Barosi G, Bredi E et al (1997) A variant of the EPB3 gene of the anti-Lepore type in hereditary spherocytosis. Br J Haematol 98:283–288

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H et al (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  PubMed  CAS  Google Scholar 

  • Brichta L, Holker I, Haug K, Klockgether T, Wirth B (2006) In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol 59:970–975

    Article  PubMed  CAS  Google Scholar 

  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78:63–77

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  • Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Anderson K, Moore MJ (2000) Evidence for a linear search in bimolecular 3 splice site AG selection. Proc Natl Acad Sci U S A 97:593–598

    Article  PubMed  CAS  Google Scholar 

  • Chen WL, Lin JW, Huang HJ, Wang SM, Su MT et al (2008) SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 1233:176–184

    Article  PubMed  CAS  Google Scholar 

  • Clarke LA, Veiga I, Isidro G, Jordan P, Ramos JS et al (2000) Pathological exon skipping in an HNPCC proband with MLH1 splice acceptor site mutation. Genes Chromosomes Cancer 29:367–370

    Article  PubMed  CAS  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  PubMed  CAS  Google Scholar 

  • Dlott B, d’Azzo A, Quon DV, Neufeld EF (1990) Two mutations produce intron insertion in mRNA and elongated beta-subunit of human beta-hexosaminidase. J Biol Chem 265:17921–17927

    PubMed  CAS  Google Scholar 

  • D’Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM et al (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 96:5598–5603

    Article  PubMed  Google Scholar 

  • Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Fisher CW, Fisher CR, Chuang JL, Lau KS, Chuang DT et al (1993) Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: multiple-exon skipping as a secondary effect of the mutations. Am J Hum Genet 52:414–424

    PubMed  CAS  Google Scholar 

  • Gabellini D, D’Antona G, Moggio M, Prelle A, Zecca C et al (2006) Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439:973–977

    PubMed  CAS  Google Scholar 

  • Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110:339–348

    Article  PubMed  CAS  Google Scholar 

  • Gao K, Masuda A, Matsuura T, Ohno K (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36:2257–2267

    Article  PubMed  CAS  Google Scholar 

  • Gharehbaghi-Schnell EB, Finsterer J, Korschineck I, Mamoli B, Binder BR (1998) Genotype-phenotype correlation in myotonic dystrophy. Clin Genet 53:20–26

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  Google Scholar 

  • Goren A, Ram O, Amit M, Keren H, Lev-Maor G et al (2006) Comparative analysis identifies exonic splicing regulatory sequences – The complex definition of enhancers and silencers. Mol Cell 22:769–781

    Article  PubMed  CAS  Google Scholar 

  • Gorlov IP, Gorlova OY, Frazier ML, Amos CI (2003) Missense mutations in hMLH1 and hMSH2 are associated with exonic splicing enhancers. Am J Hum Genet 73:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Hum Genet 74:805–816

    Article  PubMed  CAS  Google Scholar 

  • Haire RN, Ohta Y, Strong SJ, Litman RT, Liu YY et al (1997) Unusual patterns of exon skipping in bruton tyrosine kinase are associated with mutations involving the intron 17 3 splice site. Am J Hum Genet 60:798–807

    PubMed  CAS  Google Scholar 

  • Harper PS, Monckton DG (2004) Myotonic dystrophy. In: Engel AG (ed) Myology, 3rd edn. McGraw-Hill, New York, NY, pp 1039–1076

    Google Scholar 

  • Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader–Willi/Angelman region. Am J Med Genet A 146A:2041–2052

    Article  PubMed  CAS  Google Scholar 

  • Hsu BY, Iacobazzi V, Wang Z, Harvie H, Chalmers RA et al (2001) Aberrant mRNA splicing associated with coding region mutations in children with carnitine-acylcarnitine translocase deficiency. Mol Genet Metab 74:248–255

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Daughters RS, Ranum LP (2008) Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7:150–158

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F et al (2006) Protein composition of the intranuclear inclusions of FXTAS. Brain 129:256–271

    Article  PubMed  CAS  Google Scholar 

  • Jacquemont S, Hagerman RJ, Hagerman PJ, Leehey MA (2007) Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol 6:45–55

    Article  PubMed  CAS  Google Scholar 

  • Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ et al (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359–371

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13:3079–3088

    Article  PubMed  CAS  Google Scholar 

  • Kashima T, Rao N, Manley JL (2007) An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A 104:3426–3431

    Article  PubMed  CAS  Google Scholar 

  • Kimbell LM, Ohno K, Engel AG, Rotundo RL (2004) C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem 279:10997–11005

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F et al (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Yamamoto N, Murakami T, Okumura M, Mayeda A et al (2004) Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Genes Cells 9:121–130

    Article  PubMed  CAS  Google Scholar 

  • Koushika SP, Soller M, White K (2000) The neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein. Mol Cell Biol 20:1836–1845

    Article  PubMed  CAS  Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K et al (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  PubMed  CAS  Google Scholar 

  • Licatalosi DD, Darnell RB (2006) Splicing regulation in neurologic disease. Neuron 52:93–101

    Article  PubMed  CAS  Google Scholar 

  • Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y et al (2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  PubMed  CAS  Google Scholar 

  • Manabe T, Katayama T, Sato N, Gomi F, Hitomi J et al (2003) Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer’s disease. Cell Death Differ 10:698–708

    Article  PubMed  CAS  Google Scholar 

  • Masuda A, Shen XM, Ito M, Matsuura T, Engel AG et al (2008) hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum Mol Genet 17:4022–4035

    Article  PubMed  CAS  Google Scholar 

  • Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38:758–769

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddi M, Rebay I (2005) Molecular genetics of spinocerebellar ataxia type 8 (SCA8). RNA Biol 2:49–52

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Milone M, Shen X-M, Engel AG (2003) A frameshifting mutation in CHRNE unmasks skipping of the preceding exon. Hum Mol Genet 12:3055–3066

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Tsujino A, Shen X-M, Milone M, Engel AG (2005) Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries. J Med Genet 42:e53

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JP, Rogan PK, Cariello N, Nicklas JA (1998) Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. Mutat Res 411:179–214

    Article  PubMed  Google Scholar 

  • Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280:737–741

    Article  PubMed  CAS  Google Scholar 

  • Query CC, Moore MJ, Sharp PA (1994) Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev 8:587–597

    Article  PubMed  CAS  Google Scholar 

  • Query CC, Strobel SA, Sharp PA (1996) Three recognition events at the branch-site adenine. EMBO J 15:1392–1402

    PubMed  CAS  Google Scholar 

  • Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  PubMed  CAS  Google Scholar 

  • Rogan PK, Schneider TD (1995) Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites. Hum Mutat 6:74–76

    Article  PubMed  CAS  Google Scholar 

  • Sahashi K, Masuda A, Matsuura T, Shinmi J, Zhang Z et al (2007) In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5 splice sites. Nucleic Acids Res 35:5995–6003

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Hori O, Yamaguchi A, Lambert JC, Chartier-Harlin MC et al (1999) A novel presenilin-2 splice variant in human Alzheimer’s disease brain tissue. J Neurochem 72:2498–2505

    Article  PubMed  CAS  Google Scholar 

  • Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47

    Article  PubMed  CAS  Google Scholar 

  • Schwarze U, Starman BJ, Byers PH (1999) Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor-site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation. Am J Hum Genet 65:336–344

    Article  PubMed  CAS  Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ et al (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15:2490–2508

    Article  PubMed  CAS  Google Scholar 

  • Soller M, White K (2003) ELAV inhibits 3-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev 17:2526–2538

    Article  PubMed  CAS  Google Scholar 

  • Sperling J, Azubel M, Sperling R (2008) Structure and function of the Pre-mRNA splicing machine. Structure 16:1605–1615

    Article  PubMed  CAS  Google Scholar 

  • Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E et al (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67:325–333

    Article  PubMed  CAS  Google Scholar 

  • Takahara K, Schwarze U, Imamura Y, Hoffman GG, Toriello H et al (2002) Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. Am J Hum Genet 71:451–465

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M et al (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422:438–441

    Article  PubMed  CAS  Google Scholar 

  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  PubMed  CAS  Google Scholar 

  • Ule J, Stefani G, Mele A, Ruggiu M, Wang X et al (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–586

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rolish ME, Yeo G, Tung V, Mawson M et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845

    Article  PubMed  CAS  Google Scholar 

  • Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ et al (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2:26–30

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Romfo CM, Nilsen TW, Green MR (1999) Functional recognition of the 3 splice site AG by the splicing factor U2AF35. Nature 402:832–835

    Article  PubMed  CAS  Google Scholar 

  • Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB et al (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102:17551–17558

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Kangsamaksin T, Chao MS, Banerjee JK, Chasin LA (2005) Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol 25:7323–7332

    Article  PubMed  CAS  Google Scholar 

  • Zorio DA, Blumenthal T (1999) Both subunits of U2AF recognize the 3 splice site in Caenorhabditis elegans. Nature 402:835–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Works from the authors’ laboratories have been supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and from the Ministry of Health, Labor, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinji Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ohno, K., Masuda, A. (2011). RNA Pathologies in Neurological Disorders. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_14

Download citation

Publish with us

Policies and ethics