Selection and Sequencing of Strains as References for Human Microbiome Studies

  • Eline S. Klaassens
  • Mark Morrison
  • Sarah K. Highlander


Metagenomics is a rapidly changing field of microbial biology that provides insights into the diversity and functional capacity of the microbial communities. In order to improve the phylogenetic and physiological interpretation of metagenomic data, it is essential to produce sequence data for individual reference strains. The NIH-supported Human Microbiome Project (HMP) plans to sequence the genomes of 900 reference strains representing isolates from all major body sites. This Chapter describes the approaches used by the strain selection groups of the HMP and International Human Microbiome Consortium (IHMC) to achieve this goal as well as some current and future challenges and opportunities facing those interested in metagenomics of the human body. Although advances in DNA sequencing technology have helped make the selection and sequencing of reference strains less dependent on cultivation and large quantities of DNA, using the data in pursuit of strain isolation and purification should not be neglected. The international collaborations that have developed via the leadership of North American and European research groups have also created an excellent opportunity to undertake a pangenomic analysis of human microbiomes, which may substantially increase the value of comparative analysis of metagenomic datasets, leading to a better understanding of host–microbiome relationships in health and disease.


Body Site Multiple Displacement Amplification Human Microbiome Metagenomic Data Human Microbiome Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Anonymous (1977) Anaerobe laboratory manual. Anaerobe Laboratory, Blacksburg, VA.Google Scholar
  4. Anonymous (1981) The pioneers of pediatric medicine: Teodor Escherich. Eur J Pediatr 137:131Google Scholar
  5. Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol 396:71–91PubMedCrossRefGoogle Scholar
  6. Aranki A, Syed SA, Kenney EB et al (1969) Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol Biotechnol 17:568–576Google Scholar
  7. Aziz RK, Bartels D, Best AA, et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bairoch, A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097–3103PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bakir MA, Kitahara M, Sakamoto M, et al (2006) Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154PubMedCrossRefGoogle Scholar
  10. Barcenilla A, Pryde SE, Martin JC et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661PubMedCentralPubMedCrossRefGoogle Scholar
  11. Borodovsky M, McIninch J (1993) GeneMark: parallel gene recognition for both DNA strands. Comput Chem 19:123–133CrossRefGoogle Scholar
  12. Chain PS, Grafham DV, Fulton RS et al (2009) Genomics. Genome project standards in a new era of sequencing. Science 326:236–237PubMedCrossRefGoogle Scholar
  13. Chassard C, Delmas E, Lawson PA et al (2008) Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58:1008–1013PubMedCrossRefGoogle Scholar
  14. Collado MC, Derrien M, Isolauri E et al (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770PubMedCentralPubMedCrossRefGoogle Scholar
  15. Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedCentralPubMedCrossRefGoogle Scholar
  16. Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641PubMedCentralPubMedCrossRefGoogle Scholar
  17. Derrien M, Collado MC, Ben-Amor K et al (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648PubMedCentralPubMedCrossRefGoogle Scholar
  18. Derrien M, Vaughan EE, Plugge CM et al (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476PubMedCrossRefGoogle Scholar
  19. Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:2383–2400CrossRefGoogle Scholar
  20. Duan Y, Zhou L, Hall DG et al (2009) Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. Mol Plant Microbe Interact 22:1011–1020PubMedCrossRefGoogle Scholar
  21. Eckburg PB, Bik EM, Bernstein CN, et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCentralPubMedCrossRefGoogle Scholar
  22. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  23. Ferrari BC, Winsley T, Gillings M et al (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269PubMedCrossRefGoogle Scholar
  24. Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469PubMedGoogle Scholar
  25. Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–288PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gardy JL, Laird MR, Chen F et al (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623PubMedCrossRefGoogle Scholar
  27. Gill SR, Pop M, DeBoy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCentralPubMedCrossRefGoogle Scholar
  28. Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192PubMedCentralPubMedCrossRefGoogle Scholar
  29. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–57PubMedCentralPubMedCrossRefGoogle Scholar
  30. Haffajee AD, Cugini MA, Tanner A et al (1998) Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J Clin Periodontol 25:346–353PubMedCrossRefGoogle Scholar
  31. Haffajee AD, Socransky SS, Patel MR et al (2008) Microbial complexes in supragingival plaque. Oral Microbiol Immunol 23:196–205PubMedCrossRefGoogle Scholar
  32. Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hayashi H, Shibata K, Bakir MA et al (2007a) Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:1323–1326PubMedCrossRefGoogle Scholar
  34. Hayashi H, Shibata K, Sakamoto M et al (2007b) Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:941–946PubMedCrossRefGoogle Scholar
  35. Hyman RW, Fukushima M, Diamond L et al (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102:7952–7957PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ingham CJ, van Hylckama Vlieg JE (2008) MEMS and the microbe. Lab Chip 8:1604–1616PubMedCrossRefGoogle Scholar
  37. Ishoey T, Woyke T, Stepanauskas R et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204PubMedCentralPubMedCrossRefGoogle Scholar
  38. Juncker AS, Willenbrock H, Von Heijne G et al (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101PubMedCrossRefGoogle Scholar
  40. Kopke B, Wilms R, Engelen B et al (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kyrpides NC (2009) Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat Biotechnol 27:627–632PubMedCrossRefGoogle Scholar
  42. Lagesen K, Hallin P, Rodland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37:450–453PubMedCrossRefGoogle Scholar
  44. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedCrossRefGoogle Scholar
  45. Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–196PubMedCentralPubMedCrossRefGoogle Scholar
  46. McHardy AC, Martin HG, Tsirigos A et al (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4:63–72PubMedCrossRefGoogle Scholar
  47. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedCentralPubMedCrossRefGoogle Scholar
  48. Mohan R, Namsolleck P, Lawson PA et al (2006) Clostridium asparagiforme sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 29:292–299PubMedCrossRefGoogle Scholar
  49. Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedCentralPubMedGoogle Scholar
  50. Mulder N, Apweiler R (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396:59–70PubMedCrossRefGoogle Scholar
  51. Mulder NJ, Apweiler R, Attwood TK, et al (2007) New developments in the InterPro database. Nucleic Acids Res 35:D224–228PubMedCentralPubMedCrossRefGoogle Scholar
  52. Palmer C, Bik EM, Digiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177PubMedCentralPubMedCrossRefGoogle Scholar
  53. Petrosino JF, Highlander S, Luna RA et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866PubMedCentralPubMedCrossRefGoogle Scholar
  54. Pryde SE, Duncan SH, Hold GL, et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139PubMedCrossRefGoogle Scholar
  55. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32:D284–288PubMedCentralPubMedCrossRefGoogle Scholar
  57. Rodrigue S, Malmstrom RR, Berlin AM, et al (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4:e6864PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sakamoto M, Kitahara M, Benno Y (2007) Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:293–296PubMedCrossRefGoogle Scholar
  59. Singh J, Behal A, Singla N et al (2009) Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol J 4:480–494PubMedCrossRefGoogle Scholar
  60. Socransky SS, Haffajee AD, Cugini MA et al (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144PubMedCrossRefGoogle Scholar
  61. Song Y, Kononen E, Rautio M et al (2006) Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol 56:1985–1990PubMedCrossRefGoogle Scholar
  62. Stevenson BS, Eichorst SA, Wertz JT et al (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755PubMedCentralPubMedCrossRefGoogle Scholar
  63. Tap J, Mondot S, Levenez F et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584PubMedCrossRefGoogle Scholar
  64. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41PubMedCentralPubMedCrossRefGoogle Scholar
  65. Tatusov RL, Natale DA, Garkavtsev IV et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zengler K, Toledo G, Rappe M et al (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zoetendal EG, Plugge CM, Akkermans AD et al (2003) Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53:211–215PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eline S. Klaassens
    • 1
  • Mark Morrison
    • 1
  • Sarah K. Highlander
    • 2
  1. 1.CSIRO Livestock Industries, Queensland Bioscience PrecinctSt LuciaAustralia
  2. 2.Department of Molecular Virology and Microbiology, Human Genome Sequencing CenterBaylor College of MedicineHoustonUSA

Personalised recommendations