The Human Microbiome and Host–Pathogen Interactions

  • Mark J. Pallen


In the past, medical microbiology has largely relied on simplifying assumptions of one-to-one relationships: between a single pathogen and a single disease or between a single gene and virulence-related phenotype. Now, thanks to technical and conceptual advances, we are moving towards a new paradigm, in which pathogen–host interactions are best evaluated against the backdrop of the complex community of germs, genes and genomes known as the human microbiome, which acts as a reservoir of colonisation, virulence and resistance determinants. This new outlook blurs the boundaries between pathogen and commensal, emphasises the immunological crosstalk between microbiota and host and recognises the complex interplay between the human microbiome, colonisation resistance, diet, antibiotics and inflammation. On this view, pathogenesis is more like guerrilla warfare or terrorism than a clash between standing armies – the success of the pathogen, like that of the partisan, depending critically on what is happening in the local community.


Bacterial Vaginosis Phylogenetic Profile Human Microbiome Project Complex Microbial Community Human Microbiota 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al Masalma M, Armougom F, Scheld WM, Dufour H, Roche PH, Drancourt M, Raoult D (2009) The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin Infect Dis 48(9):1169–1178PubMedGoogle Scholar
  2. Alverdy JC, Chang EB (2008) The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83(3):461–466PubMedGoogle Scholar
  3. Are A, Aronsson L, Wang S, Greicius G, Lee YK, Gustafsson JA, Pettersson S, Arulampalam V (2008) Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci USA 105(6):1943–1948PubMedCentralPubMedGoogle Scholar
  4. Avila M, Ojcius DM, Yilmaz O (2009) The oral microbiota: living with a permanent guest. DNA Cell Biol 28(8):405–411PubMedCentralPubMedGoogle Scholar
  5. Bartlett JG (2009) Clostridium difficile infection: historic review. Anaerobe 15(6):227–229PubMedGoogle Scholar
  6. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103(3):732–737PubMedCentralPubMedGoogle Scholar
  7. Bjorksten B (2009) The hygiene hypothesis: do we still believe in it? Nestle Nutr Workshop Ser Pediatr Program 64(11–8); Discussion 18–22:251–257Google Scholar
  8. Bonten MJ, Krueger WA (2006) Selective decontamination of the digestive tract: cumulating evidence, at last? Semin Respir Crit Care Med 27(1):18–22PubMedGoogle Scholar
  9. Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132(3):472–477PubMedGoogle Scholar
  10. Carroll IM, Threadgill DW, Threadgill DS (2009) The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm Genome 20(7):395–403PubMedGoogle Scholar
  11. Cherneski CL, Embil JM (2001) Necrotizing fasciitis. Saudi Med J 22(7):565–568PubMedGoogle Scholar
  12. Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158(3):442–455PubMedCentralPubMedGoogle Scholar
  13. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136(6):2003–2014PubMedGoogle Scholar
  14. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the anti-infective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104(18):7617–7621PubMedCentralPubMedGoogle Scholar
  15. Coward C, Grant AJ, Swift C, Philp J, Towler R, Heydarian M, Frost JA, Maskell DJ (2006) Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl Environ Microbiol 72(7):4638–4647PubMedCentralPubMedGoogle Scholar
  16. Davies J (2009) Darwin and microbiomes. EMBO Rep 10(8):805PubMedCentralPubMedGoogle Scholar
  17. de Smet AM, Bonten MJ (2008) Selective decontamination of the digestive tract. Curr Opin Infect Dis 21(2):179–183PubMedGoogle Scholar
  18. de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66PubMedGoogle Scholar
  19. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280PubMedCentralPubMedGoogle Scholar
  20. Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD (2008a) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43PubMedCentralPubMedGoogle Scholar
  21. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008b) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3(10):e3326PubMedCentralPubMedGoogle Scholar
  22. Dutta C, Pan A (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27(1)(Suppl 1):27–33PubMedGoogle Scholar
  23. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638PubMedCentralPubMedGoogle Scholar
  24. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170PubMedCentralPubMedGoogle Scholar
  25. Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276PubMedGoogle Scholar
  26. Fitzgerald JR, Musser JM (2001) Evolutionary genomics of pathogenic bacteria. Trends Microbiol 9(11):547–553PubMedGoogle Scholar
  27. Foxman B, Goldberg D, Murdock C, Xi C, Gilsdorf JR (2008) Conceptualizing human microbiota: from multicelled organ to ecological community. Interdiscip Perspect Infect Dis 2008:613979PubMedCentralPubMedGoogle Scholar
  28. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24(1):4–10PubMedGoogle Scholar
  29. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785PubMedCentralPubMedGoogle Scholar
  30. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359PubMedCentralPubMedGoogle Scholar
  31. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192PubMedCentralPubMedGoogle Scholar
  32. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249PubMedGoogle Scholar
  33. Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F (2009) Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 77(10):4668–4678PubMedCentralPubMedGoogle Scholar
  34. Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39(1):33–39PubMedGoogle Scholar
  35. Honda H, Dubberke ER (2009) Clostridium difficile infection: a re-emerging threat. Mo Med 106(4):287–291PubMedCentralPubMedGoogle Scholar
  36. Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292(5519):1115–1118PubMedGoogle Scholar
  37. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945Google Scholar
  38. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear–cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5(1):104–112PubMedGoogle Scholar
  39. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 18(7):1278–1285PubMedGoogle Scholar
  40. Kinross JM, von Roon AC, Holmes E, Darzi A, Nicholson JK (2008) The human gut microbiome: implications for future health care. Curr Gastroenterol Rep 10(4):396–403PubMedGoogle Scholar
  41. Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93(Suppl 1):S35–S40PubMedGoogle Scholar
  42. Koch R (1884) Die Aetiologie der tuberculose. Mitt Kaiser Gesundh 2:1Google Scholar
  43. Koch R (1892) Ueber bakteriologische Forschung. Verh. X. Int Med Congr, Berlin, p 35Google Scholar
  44. Koval SF, Bayer ME (1997) Bacterial capsules: no barrier against Bdellovibrio. Microbiology 143(Pt 3):749–753PubMedGoogle Scholar
  45. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274PubMedGoogle Scholar
  46. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14(4):169–181PubMedCentralPubMedGoogle Scholar
  47. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15(12):1377–1382PubMedCentralPubMedGoogle Scholar
  48. Lampe JW (2008) The human microbiome project: getting to the guts of the matter in cancer epidemiology. Cancer Epidemiol Biomarkers Prev 17(10):2523–2524PubMedGoogle Scholar
  49. Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Muhlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371(3):836–849PubMedGoogle Scholar
  50. Lewis RE (2009) Overview of the changing epidemiology of candidemia. Curr Med Res Opin 25(7):1732–1740PubMedGoogle Scholar
  51. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedGoogle Scholar
  52. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe 2(3):204PubMedGoogle Scholar
  53. Mason KL, Huffnagle GB, Noverr MC, Kao JY (2008) Overview of gut immunology. Adv Exp Med Biol 635:1–14PubMedGoogle Scholar
  54. Medellin-Pena MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 73(13):4259–4267PubMedCentralPubMedGoogle Scholar
  55. Metchnikoff Elie, Chalmers Mitchell P (1908) The prolongation of life: optimistic studies. G. P. Putnam’s sons, New York and LondonGoogle Scholar
  56. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46PubMedGoogle Scholar
  57. Mihajlovski A, Alric M, Brugere JF (2008) A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 159(7–8):516–521PubMedGoogle Scholar
  58. Mongodin EF, Emerson JB, Nelson KE (2005) Microbial metagenomics. Genome Biol 6(10):347PubMedCentralPubMedGoogle Scholar
  59. Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, Honda T, Yasunaga T, Nakaya T, Kawai J, Hayashizaki Y, Horii T, Iida T (2008) Metagenomic diagnosis of bacterial infections. Emerg Infect Dis 14(11):1784–1786PubMedCentralPubMedGoogle Scholar
  60. Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T, Okamoto Y, Tagami M, Morita R, Maeda N, Kawai J, Hayashizaki Y, Nagai Y, Horii T, Iida T, Nakaya T (2009) Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One 4(1):e4219PubMedCentralPubMedGoogle Scholar
  61. Nasidze I, Li J, Quinque D, Tang K, Stoneking M (2009a) Global diversity in the human salivary microbiome. Genome Res 19(4):636–643PubMedCentralPubMedGoogle Scholar
  62. Nasidze I, Quinque D, Li J, Li M, Tang K, Stoneking M (2009b) Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches. Anal Biochem 391(1):64–68PubMedGoogle Scholar
  63. Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43(7):831–841PubMedGoogle Scholar
  64. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358(10):991–998PubMedGoogle Scholar
  65. Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449(7164):835–842PubMedGoogle Scholar
  66. Parahitiyawa NB, Scully C, Leung WK, Yam WC, Jin LJ, Samaranayake LP (2009) Exploring the oral bacterial flora: current status and future directions. Oral Dis 16(2):136–145Google Scholar
  67. Pennisi M, Antonelli M (2009) Clinical aspects of invasive candidiasis in critically ill patients. Drugs 69(Suppl 1):21–28PubMedGoogle Scholar
  68. Petersen A, Heegaard PM, Pedersen AL, Andersen JB, Sorensen RB, Frokiaer H, Lahtinen SJ, Ouwehand AC, Poulsen M, Licht TR (2009) Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 9:245PubMedCentralPubMedGoogle Scholar
  69. Peterson J (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323Google Scholar
  70. Preidis GA, Versalovic J (2009) Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136(6):2015–2031PubMedGoogle Scholar
  71. Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, Nasirul Islam KM, Gudmundsson GH, Andersson J, Agerberth B (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci USA 103(24):9178–9183PubMedCentralPubMedGoogle Scholar
  72. Raza S, Baig MA, Russell H, Gourdet Y, Berger BJ (2009) Clostridium difficile infection following chemotherapy. Recent Pat Antiinfect Drug Discov 5(1):1–9Google Scholar
  73. Reiff C, Kelly D (2009) Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 300(1):25–33Google Scholar
  74. Rendon MA, Saldana Z, Erdem AL, Monteiro-Neto V, Vazquez A, Kaper JB, Puente JL, Giron JA (2007) Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci USA 104(25):10637–10642PubMedCentralPubMedGoogle Scholar
  75. Rueping MJ, Vehreschild JJ, Cornely OA (2009) Invasive candidiasis and candidemia: from current opinions to future perspectives. Expert Opin Invest Drugs 18(6):735–748Google Scholar
  76. Salzman NH, Bevins CL (2008) Negative interactions with the microbiota: IBD. Adv Exp Med Biol 635:67–78PubMedGoogle Scholar
  77. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133PubMedGoogle Scholar
  78. Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79PubMedCentralPubMedGoogle Scholar
  79. Schellenberg J, Links MG, Hill JE, Dumonceaux TJ, Peters GA, Tyler S, Ball TB, Severini A, Plummer FA (2009) Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl Environ Microbiol 75(9):2889–2898PubMedCentralPubMedGoogle Scholar
  80. Schumann A, Nutten S, Donnicola D, Comelli EM, Mansourian R, Cherbut C, Corthesy-Theulaz I, Garcia-Rodenas C (2005) Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genom 23(2):235–245Google Scholar
  81. Searle LE, Best A, Nunez A, Salguero FJ, Johnson L, Weyer U, Dugdale AH, Cooley WA, Carter B, Jones G, Tzortzis G, Woodward MJ, La Ragione RM (2009) A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. J Med Microbiol 58(Pt 1):37–48PubMedGoogle Scholar
  82. Shanahan F (2002) The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16(6):915–931PubMedGoogle Scholar
  83. Sibartie S, O’Hara AM, Ryan J, Fanning A, O’Mahony J, O’Neill S, Sheil B, O’Mahony L, Shanahan F (2009) Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol 10:54PubMedCentralPubMedGoogle Scholar
  84. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325(5944):1128–1131PubMedGoogle Scholar
  85. Srinivasan S, Fredricks DN (2008) The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis 2008:750479PubMedCentralPubMedGoogle Scholar
  86. Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt WD (2008) Motility allows S. typhimurium to benefit from the mucosal defence. Cell Microbiol 10(5):1166–1180PubMedGoogle Scholar
  87. Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol 16(3):107–114PubMedGoogle Scholar
  88. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5(10):2177–2189PubMedGoogle Scholar
  89. Steinberg KM, Levin BR (2007) Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc Biol Sci 274(1621):1921–1929PubMedGoogle Scholar
  90. Streit WR, Schmitz RA (2004) Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498PubMedGoogle Scholar
  91. Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Muhlenhoff M (2006) Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol Microbiol 60(5):1123–1135PubMedGoogle Scholar
  92. Tanaka K, Sawamura S, Satoh T, Kobayashi K, Noda S (2007) Role of the indigenous microbiota in maintaining the virus-specific CD8 memory T cells in the lung of mice infected with murine cytomegalovirus. J Immunol 178(8):5209–5216PubMedGoogle Scholar
  93. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26(1):37–57PubMedGoogle Scholar
  94. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R, Matthews S, Marches O, Frankel G, Hayashi T, Pallen MJ (2006) An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103(40):14941–14946PubMedCentralPubMedGoogle Scholar
  95. Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Quan PL, Lipkin WI, Downing R, Tappero JW, Okware S, Lutwama J, Bakamutumaho B, Kayiwa J, Comer JA, Rollin PE, Ksiazek TG, Nichol ST (2008) Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 4(11):e1000212PubMedCentralPubMedGoogle Scholar
  96. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6(11):805–814PubMedGoogle Scholar
  97. Truusalu K, Mikelsaar RH, Naaber P, Karki T, Kullisaar T, Zilmer M, Mikelsaar M (2008) Eradication of Salmonella typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol 8:132PubMedCentralPubMedGoogle Scholar
  98. Tschop MH, Hugenholtz P, Karp CL (2009) Getting to the core of the gut microbiome. Nat Biotechnol 27(4):344–346PubMedGoogle Scholar
  99. Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, Ramnani P (2009) Studying the human gut microbiota in the trans-omics era – focus on metagenomics and metabonomics. Curr Pharm Des 15(13):1415–1427PubMedGoogle Scholar
  100. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031PubMedGoogle Scholar
  101. Vaarala O, Atkinson MA, Neu J (2008) The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57(10):2555–2562PubMedCentralPubMedGoogle Scholar
  102. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105(52):20858–20863PubMedCentralPubMedGoogle Scholar
  103. Vassallo MF, Walker WA (2008) Neonatal microbial flora and disease outcome. Nestle Nutr Workshop Ser Pediatr Program 61:211–224PubMedGoogle Scholar
  104. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74PubMedGoogle Scholar
  105. Vieira LQ, dos Santos LM, Neumann E, da Silva AP, Moura LN, Nicoli JR (2008) Probiotics protect mice against experimental infections. J Clin Gastroenterol 42( Suppl 3 Pt 2):S168–S169PubMedGoogle Scholar
  106. Wagner RD, Johnson SJ, Kurniasih Rubin D (2009) Probiotic bacteria are antagonistic to Salmonella enterica and Campylobacter jejuni and influence host lymphocyte responses in human microbiota-associated immunodeficient and immunocompetent mice. Mol Nutr Food Res 53(3):377–388PubMedGoogle Scholar
  107. Waterfield NR, Wren BW, Ffrench-Constant RH (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2(10):833–841PubMedGoogle Scholar
  108. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271PubMedCentralPubMedGoogle Scholar
  109. Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E (2008) Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7(9):3718–3728PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Biosciences, University of BirminghamBirminghamUK

Personalised recommendations