Host Genotype and the Effect on Microbial Communities

  • Sebastian Tims
  • Erwin G. Zoetendal
  • Willem M. de Vos
  • Michiel Kleerebezem


The microbial ecosystems found along the body surfaces of mammals have provided a variety of complementary metabolic functions to their hosts. It is likely that the mammalian host and its microbiota form a coalition of cells, or a so-called “super-organism,” which mutually strives for survival. Unfortunately, the exact interactions between host and microbiota are for the most part unexplored. Our current understanding of host–microbe interactions mostly comes from studies on the gastrointestinal tract microbiota, which is the most densely populated microbial ecosystem of the mammalian host. Although mammalian host genes are greatly outnumbered by the total gene pool of their microbiota, there are several indications that host genotype is an important factor affecting the diversity and function of the microbiota. Communication between host cells and microbes is likely to be dependent on host-immune system-related genes and can therefore be influenced by polymorphisms in these genes. However, there are probably more genes which are important for host–microbe interactions that are not directly related to the immune system. Future studies should focus on the hierarchy in importance of host genotypes with relation to host–microbe interactions. Complicating the studies on host–microbe interactions are environmental factors, which can sometimes drastically influence both the host and its microbiota. Especially dietary influences should be taken into account while analyzing the interaction between the microbial communities of the gut and the host.


Microbial Community Horizontal Gene Transfer Microbiota Composition Fecal Microbiota Host Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors ST and EGZ received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013): MetaHIT, grant agreement HEALTH-F4-2007-201052, coordinated by S. Dusko Ehrlich (Institut National de la Recherche Agronomique, France).


  1. Aas JA et al (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732PubMedCentralPubMedGoogle Scholar
  2. Albert MJ, Mathan VI, Baker, SJ (1980) Vitamin B12 synthesis by human small intestinal bacteria. Nature 283(5749):781–782PubMedGoogle Scholar
  3. Adlercreutz H et al (1984) Studies on the role of intestinal bacteria in metabolism of synthetic and natural steroid hormones. J Steroid Biochem 20(1):217–229PubMedGoogle Scholar
  4. Attene-Ramos MS et al (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4(1):9–14PubMedGoogle Scholar
  5. Arbour NC et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2):187–191PubMedGoogle Scholar
  6. Backhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723PubMedCentralPubMedGoogle Scholar
  7. Backhed F et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920PubMedGoogle Scholar
  8. Backhed F et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979–984PubMedCentralPubMedGoogle Scholar
  9. Bateson P et al (2004) Developmental plasticity and human health. Nature 430(6998):419–421PubMedGoogle Scholar
  10. Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13(7):41R–53RPubMedGoogle Scholar
  11. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651PubMedGoogle Scholar
  12. Brugman S et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49(9):2105–2108PubMedGoogle Scholar
  13. Cani PD et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383PubMedGoogle Scholar
  14. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69(5):1046S–1051SPubMedGoogle Scholar
  15. Claesson MJ et al (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4(8):e6669PubMedCentralPubMedGoogle Scholar
  16. Clement K et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392(6674):398–401PubMedGoogle Scholar
  17. Considine RV et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334(5):292–295PubMedGoogle Scholar
  18. Conway PL (1995) Microbial ecology of the human large intestine, in human colonic bacteria. In: Gibson GR, Macfarlane GT (eds) Role in nutrition, physiology, and pathology. CRC Press: Boca Raton, FL, pp 1–24Google Scholar
  19. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22(9):763–779PubMedCentralPubMedGoogle Scholar
  20. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70(6):443–459PubMedGoogle Scholar
  21. Cummings JH, Macfarlane GT (1997) Colonic microflora: nutrition and health. Nutrition 13(5):476–478PubMedGoogle Scholar
  22. Debril M-B et al (2001) The pleiotropic functions of peroxisome proliferator-activated receptor? J Mol Med 79(1):30–47PubMedGoogle Scholar
  23. DiGiulio DB et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3(8):e3056PubMedCentralPubMedGoogle Scholar
  24. Dumas ME et al (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem 78(7):2199–2208PubMedGoogle Scholar
  25. Duncan SH et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32(11):1720–1724Google Scholar
  26. Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638PubMedCentralPubMedGoogle Scholar
  27. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8(3):163–167PubMedGoogle Scholar
  28. Finegold SM (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, NY, pp 3–31Google Scholar
  29. Frank DN et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785PubMedCentralPubMedGoogle Scholar
  30. Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353(18):1899–1911PubMedGoogle Scholar
  31. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770PubMedGoogle Scholar
  32. Gabaldón T, Huynen MA (2007) From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 3(11):e219PubMedCentralPubMedGoogle Scholar
  33. Gao Z et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3(7):e2719PubMedCentralPubMedGoogle Scholar
  34. Garrett WS et al (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33–45PubMedCentralPubMedGoogle Scholar
  35. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359PubMedCentralPubMedGoogle Scholar
  36. Girardin SE et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872PubMedGoogle Scholar
  37. Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 4(2B):611–624PubMedGoogle Scholar
  38. Guarner F et al (2006) Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 3(5):275–284PubMedGoogle Scholar
  39. Hague A, Singh B, Paraskeva C (1997) Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology 112(3):1036–1040PubMedGoogle Scholar
  40. Hamer HM et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119PubMedGoogle Scholar
  41. Hayashi H et al (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54(Pt 11):1093–1101PubMedGoogle Scholar
  42. Hayashi H, Sakamoto M, Benno Y (2002) Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46(12):819–831PubMedGoogle Scholar
  43. Herrmann A et al (1999) Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem 274(22):15828–15836PubMedGoogle Scholar
  44. Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60PubMedGoogle Scholar
  45. Holmes E, Nicholson JK (2007) Human metabolic phenotyping and metabolome wide association studies. Ernst Schering Found Symp Proc 4:227–249PubMedGoogle Scholar
  46. Holmes E et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396–400PubMedGoogle Scholar
  47. Hooper LV, Gordon JI (2001a) Commensal host–bacterial relationships in the gut. Science 292(5519):1115–1118PubMedGoogle Scholar
  48. Hooper LV, Gordon JI (2001b) Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11(2):1R–10RPubMedGoogle Scholar
  49. Hooper LV et al (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96(17):9833–9838PubMedCentralPubMedGoogle Scholar
  50. Hoshino K et al (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162(7):3749–3752PubMedGoogle Scholar
  51. Hoskins LC (1993) Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur J Gastroenterol Hepatol 5(4):205–213Google Scholar
  52. Hugot JP et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603PubMedGoogle Scholar
  53. Ingham CJ et al (2007) The micro-petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104(46):18217–18222PubMedCentralPubMedGoogle Scholar
  54. Inohara N et al (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276(4):2551–2554PubMedGoogle Scholar
  55. Ivanov D et al (2006) A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem 281(25):17246–17252PubMedGoogle Scholar
  56. Khachatryan ZA et al (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3(8):e3064PubMedCentralPubMedGoogle Scholar
  57. Kliewer SA et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 94(9):4318–4323PubMedCentralPubMedGoogle Scholar
  58. Kurokawa K et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14(4):169–181PubMedCentralPubMedGoogle Scholar
  59. Lander E et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedGoogle Scholar
  60. Landers CJ et al (2002) Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 123(3):689–699PubMedGoogle Scholar
  61. Lay C et al (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71(7):4153–4155PubMedCentralPubMedGoogle Scholar
  62. Lebens M et al (2002) The nptA gene of Vibrio cholerae encodes a functional sodium-dependent phosphate cotransporter homologous to the type II cotransporters of eukaryotes. J Bacteriol 184(16):4466–4474PubMedCentralPubMedGoogle Scholar
  63. Leonie Los E et al (2007) Intestinal capacity to digest and absorb carbohydrates is maintained in a rat model of cholestasis. Am J Physiol Gastrointest Liver Physiol 293(3):G615–622PubMedGoogle Scholar
  64. Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075PubMedCentralPubMedGoogle Scholar
  65. Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedGoogle Scholar
  66. Ley RE et al (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651PubMedCentralPubMedGoogle Scholar
  67. Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  68. Li M et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117–2122PubMedCentralPubMedGoogle Scholar
  69. Lillycrop KA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386PubMedGoogle Scholar
  70. Lindi V et al (2003) Impact of the Pro12Ala polymorphism of the PPAR-gamma2 gene on serum triacylglycerol response to n–3 fatty acid supplementation. Mol Genet Metab 79(1):52–60PubMedGoogle Scholar
  71. Linz B et al (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445(7130):915–918PubMedCentralPubMedGoogle Scholar
  72. Lorenz E et al (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68(11):6398–6401PubMedCentralPubMedGoogle Scholar
  73. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307(5717):1920–1925PubMedGoogle Scholar
  74. Macpherson AJ, Geuking MB, McCoy KD (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115(2):153–162PubMedCentralPubMedGoogle Scholar
  75. Manichanh C et al (2006) Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55(2):205–211PubMedCentralPubMedGoogle Scholar
  76. Marteau P et al (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67(10):4939–4942PubMedCentralPubMedGoogle Scholar
  77. Martin F-PJ et al (2007) A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112Google Scholar
  78. Martinez-Medina M et al (2006) Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12(12):1136–1145PubMedGoogle Scholar
  79. Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286PubMedCentralPubMedGoogle Scholar
  80. Medina V et al (1998) Sodium butyrate inhibits carcinoma development in a 1,2-dimethylhydrazine-induced rat colon cancer. JPEN J Parenter Enteral Nutr 22(1):14–17PubMedGoogle Scholar
  81. Metges CC (2000) Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 130(7):1857S–1864SPubMedGoogle Scholar
  82. Moodley Y et al (2009) The peopling of the Pacific from a bacterial perspective. Science 323(5913):527–530PubMedCentralPubMedGoogle Scholar
  83. Morita H et al (1993) Glycosylation and sulphation of colonic mucus glycoproteins in patients with ulcerative colitis and in healthy subjects. Gut 34(7):926–932PubMedCentralPubMedGoogle Scholar
  84. Mueller S et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033PubMedCentralPubMedGoogle Scholar
  85. Nelson KE et al (2000) Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol 18(10):1049–1054PubMedGoogle Scholar
  86. Ogura Y et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606PubMedGoogle Scholar
  87. O’Keefe SJ et al (2007) Why do African Americans get more colon cancer than Native Africans? J Nutr 137(1 Suppl):175S–182SPubMedGoogle Scholar
  88. Opitz B et al (2009) Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost 102(6):1103–1109PubMedGoogle Scholar
  89. Palmer C et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177PubMedCentralPubMedGoogle Scholar
  90. Pavoine S, Dufour AB, Chessel D (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 228(4):523–537PubMedGoogle Scholar
  91. Pei Z et al (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA 101(12):4250–4255PubMedCentralPubMedGoogle Scholar
  92. Poltorak A et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088PubMedGoogle Scholar
  93. Rajilic-Stojanovic M et al (2007) Dynamics of the adult gastrointestinal microbiota, in diversity of the human gastrointestinal microbiota – novel perspectives from high throughput analysis. PhD thesis, Wageningen University and ResearchGoogle Scholar
  94. Rajilic-Stojanovic M et al (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11(7):1736–1751Google Scholar
  95. Rakoff-Nahoum S et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241PubMedGoogle Scholar
  96. Ramotar K et al (1984) Production of menaquinones by intestinal anaerobes. J Infect Dis 150(2):213–218PubMedGoogle Scholar
  97. Rawls JF et al (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433PubMedGoogle Scholar
  98. Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21(9):793–798PubMedCentralPubMedGoogle Scholar
  99. Salzberg SL et al (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292(5523):1903–1906PubMedGoogle Scholar
  100. Samuel BS et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid-binding G-protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105(43):16767–16772PubMedCentralPubMedGoogle Scholar
  101. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133PubMedGoogle Scholar
  102. Schicho R et al (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131(5):1542–1552PubMedGoogle Scholar
  103. Schwiertz A et al (2009) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195Google Scholar
  104. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn's disease patients. Proc Natl Acad Sci USA 105(43):16731–16736PubMedCentralPubMedGoogle Scholar
  105. Sperandio V et al (2003) Bacteria–host communication: the language of hormones. Proc Natl Acad Sci USA 100(15):8951–8956PubMedCentralPubMedGoogle Scholar
  106. Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54(12):1239–1242PubMedGoogle Scholar
  107. Summerton J et al (1985) Effect of deoxycholic acid on the tumour incidence, distribution, and receptor status of colorectal cancer in the rat model. Digestion 31(2–3):77–81PubMedGoogle Scholar
  108. Tap J et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11(10):2574–2584PubMedGoogle Scholar
  109. Ting JP, Kastner DL, Hoffman HM (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6(3):183–195PubMedGoogle Scholar
  110. Toivanen P, Vaahtovuo J, Eerola E (2001) Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect Immun 69(4):2372–2377PubMedCentralPubMedGoogle Scholar
  111. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064PubMedGoogle Scholar
  112. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031PubMedGoogle Scholar
  113. Turnbaugh PJ et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223PubMedCentralPubMedGoogle Scholar
  114. Turnbaugh PJ et al (2009a) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484PubMedCentralPubMedGoogle Scholar
  115. Turnbaugh PJ et al (2009b) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14–6ra14PubMedCentralPubMedGoogle Scholar
  116. van Baarlen P et al (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci USA 106(7):2371–2376PubMedCentralPubMedGoogle Scholar
  117. Van de Merwe JP, Stegeman JH, Hazenberg MP (1983) The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn’s disease? Antonie Van Leeuwenhoek 49(2):119–124PubMedGoogle Scholar
  118. Waldram A et al (2009) Top-down systems biology modeling of host metabotype–microbiome associations in obese rodents. J Proteome Res 8(5):2361–2375PubMedGoogle Scholar
  119. Wei C, Brent MR (2006) Using ESTs to improve the accuracy of de novo gene prediction. BMC Bioinformatics 7:327PubMedCentralPubMedGoogle Scholar
  120. Wen L et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113PubMedCentralPubMedGoogle Scholar
  121. Yang X et al (2009) More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One 4(6):e6074PubMedCentralPubMedGoogle Scholar
  122. Yen C-J et al (1997) Molecular scanning of the human peroxisome proliferator activated receptor [gamma] (hPPAR[gamma]) gene in diabetic caucasians: identification of a Pro12Ala PPAR[gamma]2 missense mutation. Biochem Biophys Res Commun 241(2):270–274PubMedGoogle Scholar
  123. Zengler K et al (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130PubMedGoogle Scholar
  124. Zhang C et al (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. Isme J 4(2):232–241. Epub 2009 Oct 29.Google Scholar
  125. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64(10):3854–3859PubMedCentralPubMedGoogle Scholar
  126. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615PubMedGoogle Scholar
  127. Zoetendal EG et al (2001) The host genotype affects the bacterial community in the human gastronintestinal tract. Microb Ecol Health Dis 13(3):129–134Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sebastian Tims
    • 1
  • Erwin G. Zoetendal
    • 1
  • Willem M. de Vos
    • 1
  • Michiel Kleerebezem
    • 1
  1. 1.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations